Microsoft Extreme Regression for Ranking & Recommendation Research Yashoteja Prabhu^{*#} Aditya Kusupati[†] Nilesh Gupta^{*} Manik Varma^{*#}

*Microsoft Research India #IIT Delhi

Extreme Regression

- Predict relevance scores of millions of labels towards a given data point
- Reduces to Extreme Classification if relevance scores are binary

Training:

X: Data Points

Prediction:

Applications

- A **new paradigm** for reformulating ranking & recommendation
- Predict the most relevant label shortlist & their relevance scores for further reranking

Movie Recommendation:

Computational Advertising:

Document Tagging:

Search Query	PClick		
Sweaters for men	100%		
Clothing for men	50%		
Soft toy	10%		
Others	0%		

Tag	IP Score		
Turing awardees	1.8		
AI researchers	1.5		
Living people	1.0		
Others	0		

Limitations of Existing Approaches

Extreme Classification:

- assumption
- filtering or re-ranking

Conventional Regression:

- High accuracy and low latency predictions required in real-world recommendation
- 1-vs-All regressors scale linearly in number of labels
- Scalable tree-based regressors suffer from low accuracy

Extreme Regression Metrics

- Measure the regression errors of millions of labels Provide a good proxy for ranking quality
- Irrelevant labels dominate traditional regression metrics

Extreme Mean Absolute Deviation @ k:

Properties:

- XMAD @ L = MAD

XMAD is a better indicator of filtering & re-ranking qualities than purely ranking or regression metrics

Method	AUPRC	WP-rerank-p @5 (%)	XMAD-p@5	MAD	WP-p @5 (%)	
EURLex-4K						
Parabel	0.092	49.67	0.4227	3.96	48.29	
XReg	0.117	50.39	0.1849	1.22	49.72	
XReg-zero	0.085	50.12	0.2255	1.21	49.72	

• Predicts less relevant labels due to binary relevance

• Does not generate useful relevance scores for further

XMAD@ $k(\hat{\mathbf{r}},\mathbf{r}) = \frac{1}{k}\sum_{l} |\hat{r}_{l} - r_{l}|$

where S_k contains k labels with largest errors

• XMAD @ 1($\hat{\mathbf{r}}, \mathbf{r}$) = $\|\hat{\mathbf{r}} - \mathbf{r}\|_{\infty}$ • Ranking-regret @ $k \leq 2 \text{ XMAD} @ 2k$ ¹University of Washington

XReg: Extreme Regressor

Probabilistic Model:

• How XReg makes recommendations to a user who likes oranges, grapefruits and blueberries ?

- Learn item tree by hierarchical clustering of items
- Similar items end up in the same leaf node

- Recommend items with high regression scores

- models
- 3) Predict for a new user

• Train a separate linear regressor for each item in a leaf node

Results

Movie Recommendation:

Computational Advertising:

DSA-130K

Document Tagging:

0.05

