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1. IoT Requirements in The Smart City

4. Performance of MSC-RNN

2. N+1-class Radar Classification

5. References

‣ Performance comparison with SVM: Outperforms all-domain feature 
handcrafting at mote scale with purely time-domain feature learning

‣ Feature computation comparison with SVM: 3.5x more efficient than a 
competitive SVM solution

‣ Comparison with EMI: Outperforms monolithic EMI algorithms on all three 
metrics of accuracy, non-human and human recalls

3. MSC-RNN Solution for N+1classes 
‣ Multi-Scale Cascaded RNN (MSC-RNN) handles the two sub-problems of clutter 
rejection and source discrimination at different time scales of featurization
‣ MSC-RNN Components:
(i) EMI-FastGRNN: works at instance-level and is continuously active
(ii) FastGRNN: works at window-level 
Both the components are cascaded so that FastGRNN is invoked only when EMI-
FastGRNN detects displacement source

‣Fast(G)RNN
- FastRNN stabilizes training with residual connections and adds just 2 additional 

scalars, α & β
- α & β when converted to vector gates result in FastGRNN

‣MSC-RNN Training: MSC-RNN training loss emulates cascading behavior

‣ Resource efficiency

‣ Deployment feasibility

‣ Privacy preserving

‣ Example of N source classes + clutter class (N+1-class) classification

‣ Efficiency-Accuracy trade-off in existing solutions

‣ Interesting events may occur rarely
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FastRNN
𝐡’t = σ(𝐖𝐱t + 𝐔𝐡t−1 + 𝐛)

𝐡t = α𝐡’t + β𝐡t−1

FastGRNN
𝐳t = σ(𝐖𝐱t + 𝐔𝐡t−1 + 𝐛z)

𝐡’t = tanh(𝐖𝐱t + 𝐔𝐡t−1 + 𝐛h)
𝐡t = (ζ(1−𝐳t)+ν) ⊙ 𝐡’t + 𝐳t ⊙ 𝐡t−1
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MSC-RNN Loss = 
FastGRNN Loss + 
EMI-FastGRNN Loss
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