One Size Does Not Fit All: Multi-Scale, Cascaded RNNs for Radar Classification

Dhrubojyoti Roy¹, Sangeeta Srivastava¹, Aditya Kusupati^{2,5}, Pranshu Jain³, Manik Varma^{2,3}, Anish Arora^{1,4}

¹The Ohio State University, ²Microsoft Research India, ³Indian Institute of Technology Delhi, ⁴The Samraksh Company, ⁵University of Washington

I. IoT Requirements in The Smart City

Resource efficiency

Deployment feasibility

Privacy preserving

2. N+I-class Radar Classification

Example of N source classes + clutter class (N+I-class) classification

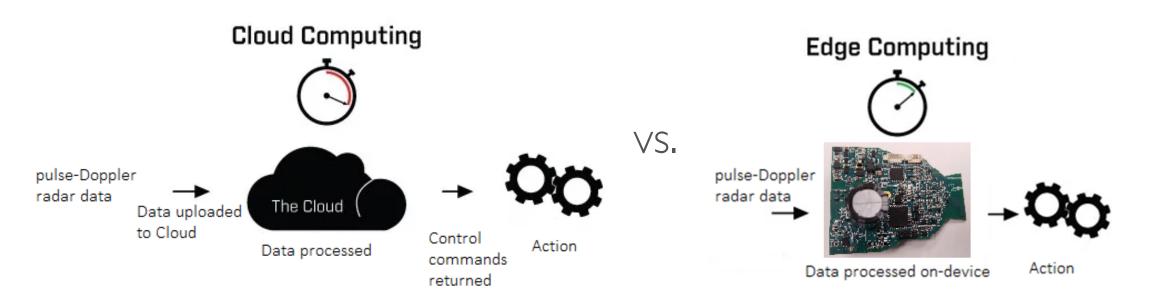
Class: Clutter

Class: Human

Class: Scooter

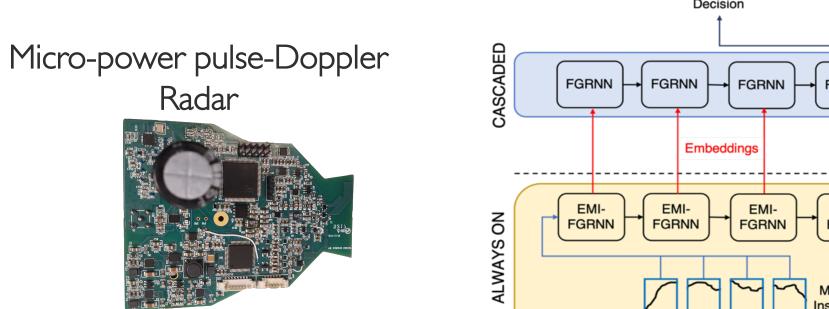
Efficiency-Accuracy trade-off in existing solutions

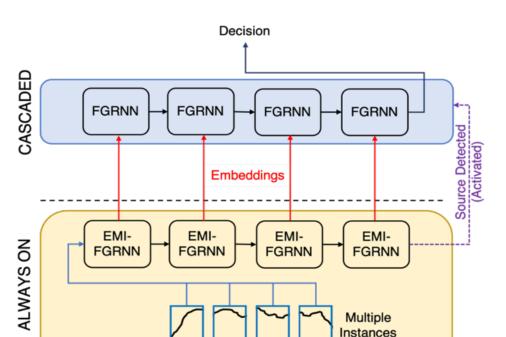
ML Model	Accuracy	FLOPS	Fits on Cortex-M3?
SVM (15 features)	0.85	37K	Yes
LSTM	0.89	100K	No
CNN (1s FFT)	0.91	1.3M	No
EMI-LSTM	0.90	20K	No
EMI-FastGRNN	0.88	8K	Yes



3. MSC-RNN Solution for N+I classes

- Multi-Scale Cascaded RNN (MSC-RNN) handles the two sub-problems of clutter rejection and source discrimination at different time scales of featurization
- MSC-RNN Components:
- (i) EMI-FastGRNN: works at instance-level and is continuously active
- (ii) FastGRNN: works at window-level
- Both the components are **cascaded** so that FastGRNN is invoked only when EMI-FastGRNN detects displacement source

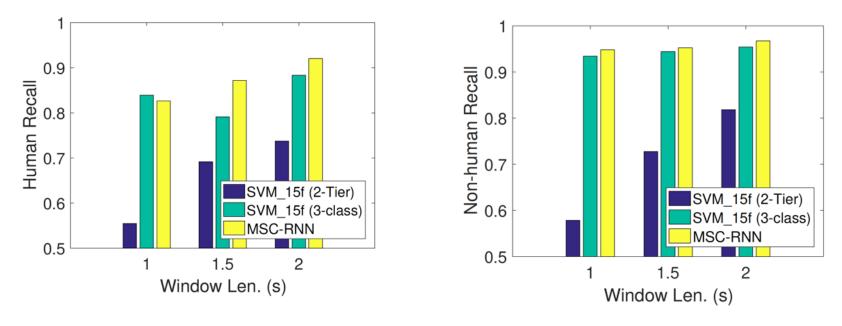




Interesting events may occur rarely

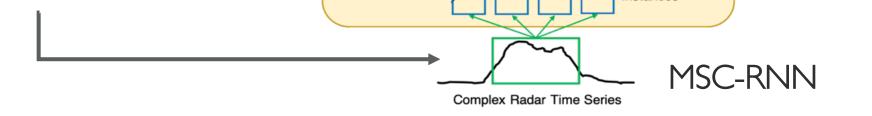
4. Performance of MSC-RNN

Performance comparison with SVM: Outperforms all-domain feature handcrafting at mote scale with purely time-domain feature learning



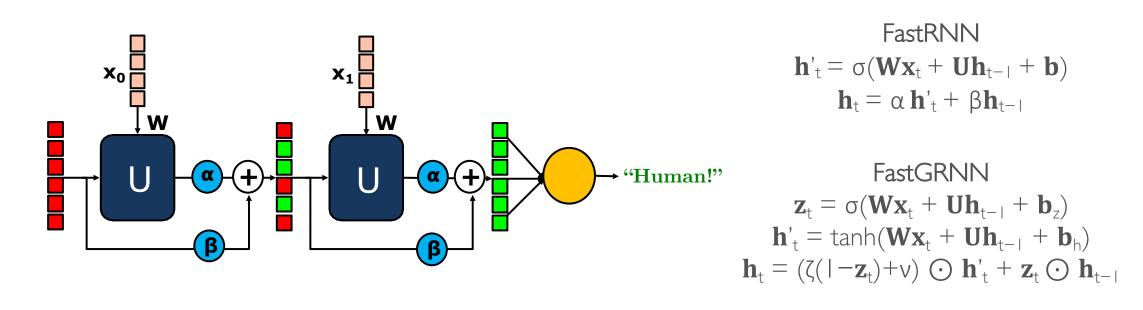
Win.	Accuracy		Clutter Recall	
Len. (s)	SVM_15f (3-class)	MSC-RNN	SVM_15f (3-class)	MSC-RNN
1	0.851	0.944	0.758	0.999
1.5	0.934	0.954	0.996	0.999
2	0.959	0.972	0.999	1.000

▶ Feature computation comparison with SVM: 3.5x more efficient than a competitive SVM solution

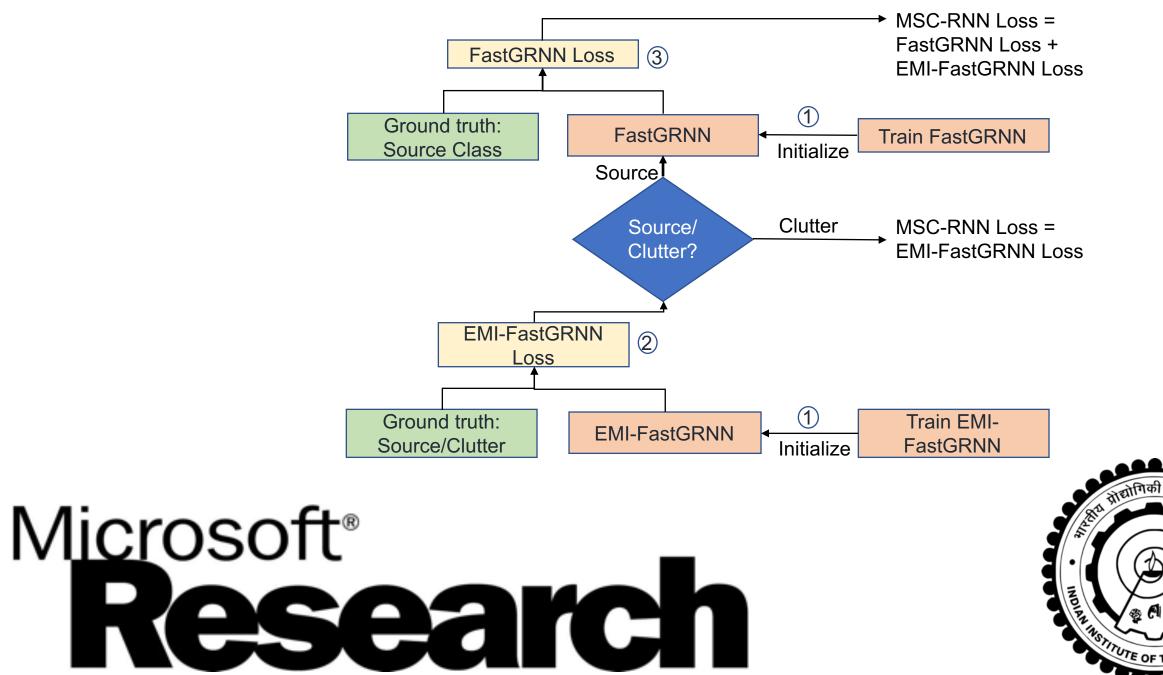


►Fast(G)RNN

- FastRNN stabilizes training with residual connections and adds just 2 additional scalars, $\alpha \& \beta$
- α & β when converted to vector gates result in FastGRNN

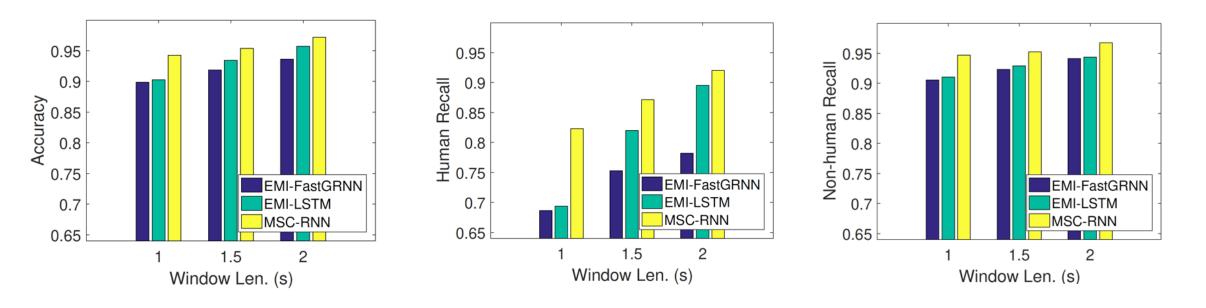


MSC-RNN Training: MSC-RNN training loss emulates cascading behavior



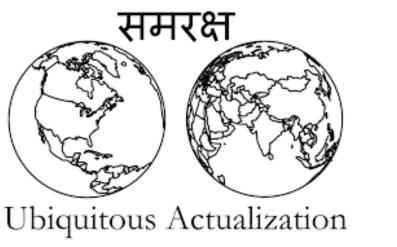
Architecture	Est. Duty Cycle (Cortex-M3)		
Architecture	97% Clutter	98% Clutter	
MSC-RNN (Inp. dim.=2)	21.00%	20.00%	
MSC-RNN (Inp. dim.=16)	10.87%	10.70%	
2-Tier SVM	2.05%	1.70%	
3-Class SVM	35.00%	35.00%	

Comparison with EMI: Outperforms monolithic EMI algorithms on all three metrics of accuracy, non-human and human recalls



5. References

- [1] Roy, Dhrubojyoti, et al. One size does not fit all: Multi-scale, cascaded RNNs for radar classification. In ACM BuildSys 2019
- [2] Kusupati, Aditya, et al. Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network. In NeurIPS 2018
- [3] Dennis, Don, et al. Multiple instance learning for efficient sequential data classification on resource-constrained devices. In NeurIPS 2018



W

