RNNPool : Efficient Non-linear Pooling for **RAM Constrained Inference**

Oindrila Saha¹, Aditya Kusupati², Harsha Vardhan Simhadri¹, Manik Varma¹ and Prateek Jain¹

¹Microsoft Research

Our goal: Accurate computer vision models that can be deployed on tiny devices

• CNN models have many layers with large activations Barriers: • Large memory footprint, the most constrained

resource on microcontrollers

- Standard pooling operators (e.g. max pool) are gross aggregators, thus are only used with a maximum stride of 2
- RNNPool can reduce intermediate feature maps significantly (up to 16x) with small loss in accuracy

Ensures heavy convolution blocks run on smaller activation maps

Existing Works **Decreasing Model Size** Pruning Sparsification Model Compression **Decreasing Compute Depthwise Separable** Convolutions Add MobileNets, EfficientNets

However, peak RAM requirement still remains high

Code: https://github.com/Microsoft/EdgeML

²University of Washington

- Takes a patch of the input and produces a 1x1 summary
- Patches having overlap of size = PatchSize Stride
- For each patch, 4 RNN runs produce the pooled feature vector

Usage

- Semantically equivalent to pooling, so can be used to replace any pooling operator
- But key usage in reducing image size in beginning of network to save RAM requirement

Evaluation

Task 1: Image Classification

Results on ImageNet-10 dataset formed by subsampling 10 classes from ImageNet1K and MobileNetV2 as the base architecture

	Model	Accuracy	MAdds	#Params	RAM	
indard Pooling chniques	Base Network	94.2	0.300G	2.2M	2.29MB	5
	Average Pooling	90.8	0.334G	2.0M		10x Lower RAM !
	Max Pooling	92.8	0.200G	2.0M	0.24MB	2
	Strided Conv	93.0	0.200G	2.1M		
	ReNet	92.2	0.296G	2.3M		
	RNNPool	94.4	0.226G	2.0M		

Task 2: Visual Wakeword -> Predict whether a person is presen

No person Present Person Present

Task 3: Face Detection

Comparison with SOTA	Method	RAM	#Params	MAdds	MAP		
for very low MAdds					Е	Μ	Н
category on WIDER	EagleEye	1.17MB	0.23M	0.1G	0.74	0.70	0.44
FACE validation subset	Rpool-Face-Quant	225KB	0.07M	0.1G	0.80	0.78	0.53

 \rightarrow

Image from https://researchdesignlab.com/stm32-armcortex-m4-development-board-stm32f407vet6.html

10.45 sec/image on STM32F439-M4 device clocked at 168 MHz

SCUT Head Dataset: https://github.com/HCIILAB/SCUT-HEAD-Dataset-Release