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Abstract

Learning binary representations of instances and classes is a classical problem
with several high potential applications. In modern settings, the compression of
high-dimensional neural representations to low-dimensional binary codes is a chal-
lenging task and often require large bit-codes to be accurate. In this work, we
propose a novel method for Learning Low-dimensional binary Codes (LLC) for
instances as well as classes. Our method does not require any side-information, like
annotated attributes or label meta-data, and learns extremely low-dimensional bi-
nary codes (≈ 20 bits for ImageNet-1K). The learnt codes are super-efficient while
still ensuring nearly optimal classification accuracy for ResNet50 on ImageNet-1K.
We demonstrate that the learnt codes capture intrinsically important features in the
data, by discovering an intuitive taxonomy over classes. We further quantitatively
measure the quality of our codes by applying it to the efficient image retrieval as
well as out-of-distribution (OOD) detection problems. For ImageNet-100 retrieval
problem, our learnt binary codes outperform 16 bit HashNet using only 10 bits and
also are as accurate as 10 dimensional real representations. Finally, our learnt bi-
nary codes can perform OOD detection, out-of-the-box, as accurately as a baseline
that needs ≈ 3000 samples to tune its threshold, while we require none. Code is
open-sourced at https://github.com/RAIVNLab/LLC.

1 Introduction

Embedding data in low-dimensional binary space is a long-standing machine learning problem [56].
The problem has received a lot of interest in the computer vision (CV) domain, where the goal is to
find binary codes that capture the key semantics of the image, like, objects present in the image or
interpretable attributes. Section 2 covers the literature on learning binary codes and their applications.

In addition to learning semantically meaningful representations of the instances, low-dimensional
binary codes allow efficiency in a variety of large-scale machine learning (ML) applications. Low-
dimensional codes are crucial in extreme classification with millions of classes [8, 30, 15] and also
critical in efficient large-scale retrieval settings [38, 16, 59].

Compressing information into binary codes is challenging due to its highly non-smooth nature while
requiring the preservation of relevant information in an instance/class. This might explain the lack
of good classification accuracy for existing classification-based embedding techniques [28, 13]. To
address that, traditional methods often relied on side-information like attributes to construct class
codes and then use that to learn the instance codes [18, 1].
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Learning binary embeddings can be posed in a variety of formulations like pairwise optimization [34]
or unsupervised learning [11, 50], in this work we focus on learning binary codes using a given
labeled multi-class dataset, e.g., ImageNet-1K. This allows us to couple the representation (code)
learning of both instances and classes thus enabling us to capture the underlying semantic structure
efficiently to assist in downstream tasks like classification, retrieval etc.

We propose LLC, a method to learn both class and instance codes via the standard classification task
and its setup without any side-information. Our Learning Low-dimensional binary Codes (LLC)
technique, formulates the embedding (code) learning problem as that of learning a low-dimensional
binary embedding of a standard deep neural “backbone”. Instead of directly training for the low-
dimensional binary instance codes, we propose a two-phase approach. In the first phase, LLC
learns low-dimensional (k-bit) binary codes for classes that capture semantic information through
a surrogate classification task. Then in the second phase, LLC uses these learnt class codes as an
efficient alternative to learning instance codes in sub-linear cost (in the number of classes, L) using
the Error-Correcting Output Codes (ECOC) approach [19]. This two-phase pipeline helps in the
effective distillation of required semantic similarity between instances through the learnt class codes.
For example, on ImageNet-1K with ResNet50, LLC is able to learn tight 20-bit codes that can be
used for efficient classification and achieve 74.5% accuracy compared to the standard baseline 77%
on ImageNet-1K (Section 4.1). Furthermore, we observe that the learnt 20-bit class codes capture
intuitive taxonomy over classes (Figure 1) while the instance codes retain the distilled class similarity
information useful in efficient retrieval and OOD detection.

Retrieval. To further study, the effectiveness of our learnt binary codes, we apply them to hashing-
based efficient retrieval, where the goal is to retrieve a large number of similar instances with the
same class label in top retrieved samples. Deep supervised hashing is a widely studied problem with
several recent results [9, 53] which are designed specifically for the learnt hashing-based retrieval.
Interestingly, our learnt instance codes through the LLC routine provide strikingly better performance
while not being learnt explicitly for hashing. For eg., using AlexNet, with just 32-bit codes we are can
provide 5.4% more accurate retrieval than HashNet’s 64-bit codes on ImageNet-100 (Section 4.2).

OOD Detection. We similarly apply LLC based learnt binary codes to detect OOD instances [26].
We adopt a simple approach based on our binary codes: if an instance is not within a Hamming
distance of 1 to any class codes, we classify it as OOD. That is, we do not fine-tune our OOD detector
for the new domain, which is critical in practical settings. In contrast, baseline techniques for OOD
detection require a few samples (eg., ≈ 3000 for ImageNet-750) from the OOD domain to fine-tune
thresholds, while we require no samples yet reaching similar OOD detection (Section 4.3).

In this work, we make the following key contributions:

• LLC method to learn semantically-rich low-dimensional binary codes for both classes & instances.
• Show that the learnt codes enable accurate & efficient classification: ImageNet-1K with 20-bits.
• Apply LLC to image retrieval task, and demonstrate that it comfortably outperforms the instance

code learning methods for hashing-based retrieval on ImageNet-100.
• Finally, use codes from LLC for strong & sample efficient OOD detection in practical settings.

2 Related Work

Binary class codes were originally aimed at sub-linear training and prediction for multi-class classifi-
cation. The Error-Correcting Output Codes (ECOC) framework [19, 3, 20] reformulated multi-class
classification as multi-label classification using k-bit codes per class (codebook). The learning of
optimal codebook is NP-complete [14] which lead to use of random codebooks [28, 13] in traditional
ML. However, there were a few codebook learning [5, 64, 58, 4] and construction schemes using
side-information from other modalities [1]. The lack of a strong learnable feature extractor often de-
terred the gains these codebooks provide for the classification and effective learning of instance codes.
Attribute annotations can also help in constructing class codes [2]. These binary codes are either
explicitly annotated [21] or discovered [47, 22]. Attributed-based learning also ties into leveraging
the class codes for zero/few-shot learning [36, 37, 1, 44] expecting some form of interpretability.

Most methods that use class codes as supervision can produce instance codes [19]. However, the
standalone literature of instance codes comes from requirements in large-scale application like
retrieval (hashing). In the past, most hashing techniques that created instance codes were based on
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random projections [16, 13, 12], semantics [51, 18] or learnt through metric learning [34, 33, 43, 32],
clustering [57, 50] and quantization [23]. Deep learning further helped in learning more accurate
hashing functions to generate instance codes either in an unsupervised [11, 52] or supervised [38, 9,
53, 62] fashion. We refer to [39, 63, 56] for a more thorough review on deep hashing methods.

Finally, embedding-based classification [13, 61, 8, 24] enables joint low-dimensional representation
learning for both classes and instances with an eye on sub-linear training and prediction costs. After
distilling the key ideas from the literature, we aim to a) learn semantically rich low-dimensional
representations for both classes and instances together, b) have these representations in the binary
space, and c) do this with minimal dependence on side-information or metadata.

LLC, to the best of our knowledge - for the first time, jointly learns low-dimensional binary codes
for both classes and instances using a surrogate classification task, without any side-information
(Section 3). The learnt class codes capture intrinsic information at the semantic level that helps in
discovering an intuitive taxonomy over classes (Figure 1). The learnt class codes then anchor the
instance code learning which results in tight and accurate low-dimensional instance codes further
used in retrieval (Section 4.2). Finally, both the learnt class and instance codes power extremely
efficient yet accurate classification (Section 4.1) and out-of-distribution detection (Section 4.3).

3 Learning Low-dimensional Binary Codes

The goal is to learn a binary embedding (code) function g : X → {−1, 1}k where X is the input
domain and k is the dimensionality of the code. We focus on learning embeddings using a labelled
multi-class data [28]. That is, suppose we are given a labelled dataset D = {(x1, y1), . . . , (xn, yn)}
where xi ∈ X is an input point and yi ∈ [L] is the label of xi for all i ∈ [n]. Then, the goal is to learn
an instance embedding function g : X → {+1,−1}k and class embeddings hq ∈ {+1,−1}k for all
q ∈ [L] such that g(xi) = hyi and g(xi) = g(xj) if and only if yi = yj .

Intuitively, for large-scale datasets, g(x) and hq should capture key semantic information to provide
accurate classification, thus allowing their use in application domains like retrieval or OOD detection.
Note that while we present our technique for learning embeddings using multi-class datasets, it
applies more generally to multi-labeled datasets as well.

Instance and Class Code Parameterization. For learning such embedding function, we assume
access to a deep neural architecture F ( · ; θF ) : X → Rd that maps the input x ∈ X to a d-dimensional
real-valued representation. θF is a learnable parameterization of the network; we drop θF from F
wherever the meaning is clear from the context. For example, ResNet50 is one such network that
encodes 224× 224 RGB images into d = 2048 dimensions.

Now, given a network F and x ∈ X , we formulate embedding function of x and the corresponding
multiclass prediction scores ŷ ∈ ZL as:

g(x) := B (P · F (x; θF )) , ŷ := B(C) · g(x) , (1)

where P ∈ Rk×d maps F (x) into k-dimensions and B(a) = sign(a) ∈ {+1,−1} is the standard
binarization/sign operator applied elementwise (with the assumption sign(0) = +1). Finally, C ∈
RL×k, and ŷ = B(C) · g(x) represents the scores of each class for an input x. Note that for a class
` ∈ [L], B(C`) (where C` represents the `-th row of C) is the learnt binary class embedding (code)
of class ` ∈ [L], and g(x) = B(P · F (x; θF )) is the learnt instance embedding (code) of instance x.
Note that (1) is a general purpose formulation for the problem of learning class and instance codes.

3.1 The LLC Method

Phase 1: Codebook Learning – B(C). Given labelled examples D, we use standard empirical risk
minimization to learn a multi-class classifier, i.e., we solve

min
C,P,θF

∑
(xi,yi)∈D

L (B(C) · (P · F (xi; θF )) ; yi) , (2)

where L : RL × [L]→ R+ is the standard multi-class softmax cross-entropy loss function. This is a
standard optimization problem that can be solved using standard gradient descent methods or other
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sub-gradient based optimizers. However, one challenge is that B(C) is a binary matrix and B is
a binary function, so the gradients are 0 almost everywhere. Instead, we use the Straight-Through
Estimator (STE) [6] technique popular in binary neural networks domain [48], to optimize for C
through the binarization. Intuitively, STE uses binarization/sign function in the forward pass, but in
the backpropagation phase, it allows the gradients to flow straight-through as if it were real-valued.
The codebook, B(C) refers to the collection of k-bit class codes learnt in this process.

For ImageNet-1K, we learnt unique binary codes, B(C`), for every class ` ∈ [L] of the 1000 classes
using only 20-bits, only twice the information-theoretic limit. As with the class representations from
a linear classifier, these class codes do capture intrinsically important features that help in discovering
intuitive taxonomy over classes (Section 3.2) among various applications (Section 4).

Phase 2: Instance Code Learning – B(P · F (x; θF )). Several existing techniques model C and
P in different ways to learn an embedding function similar to (1). However, these methods often try
to only learn instance codes and have challenges in maintaining high accuracy [9, 11] in a variety
of applications because optimization problem (2) is challenging and might lead to significantly
sub-optimal classification error. For example, for ImageNet-1K classification with ResNet50, the
accuracy for our trained model (20-bits) at this stage is 72.5% compared to the standard 77%.

To remedy this, we further optimize our embeddings using the ECOC framework [19] for multi-class
classification, which essentially transforms the multi-class problem into a multi-label problem, which
in turn is k independent binary classification problems. That is, we use the k-bit codes learnt for each
class as the supervision to further train F ( · ; θF ) and P:

min
θF ,P

∑
(xi,yi)∈D

k∑
j=1

BCE (σ(Pj · F (xi; θF )) ; (B(Cyi,j) + 1) /2) , (3)

where σ is the sigmoid/logistic function, BCE is the binary cross-entropy loss between the j-th bit
of instance xi’s embedding, and the j-th bit extracted from the class embedding of it’s label yi (the
function z 7→ (z + 1)/2 is used to map {+1,−1} to {1, 0} to make it a simple binary classification
problem per each bit). We use gradient based optimization to learn θF and P. As mentioned earlier,
ECOC framework allows us to correct errors in classification. For example, with just 20 bits on
ImageNet-1K dataset, the method now achieves 74.5% accuracy with ResNet50 backbone.

The advantage of this two-phase pipeline where we start with a codebook learning for classes is that
the cost of learning instances codes reduces to a bottleneck of k-dims (� L) instead of the usual
L . Furthermore, these learnt low-dimensional binary codes for both classes and instances help in
large-scale applications via efficient classification and retrieval (see Section 4). Note that, unlike
attribute-based methods [37], we do not require additional meta-data, but learn binary codes by only
using the standard classification task. This also circumvents the potential instabilities of pairwise
optimization in instance binary code learning which often leads to poor class codes due to codebook
collapse. At the end of LLC routine, we have learnt the instance codes, B(P · F (x; θF )), and class
codes, B(C) to be used for downstream applications. Algorithm 1 presents LLC in full.

Algorithm 1 The LLC Method

Input: D, F and B
Output: C, P and θF

1: Codebook Learning – B(C): Solve (2) using ERM and STE to get C, P and θF -

C,P, θF ← argmin
C,P,θF

∑
(xi,yi)∈D

L (B(C) · (P · F (xi; θF )) ; yi) .

2: Instance Code Learning – B(P · F (x; θf )): Further optimize P and θF by solving (3) using
ECOC framework and ERM by fixing C -

θF , P ← argmin
θF ,P

∑
(xi,yi)∈D

k∑
j=1

BCE (σ(Pj · F (xi; θF )) ; (B(Cyi,j) + 1) /2) .
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Overall, we present a simple yet scalable method to learn low-dimensional (exact) binary codes
for both classes and instances which in turn could power multi-class classification with sub-linear
costs (in terms of L) and efficient retrieval for large-scale applications. Using our method, we can
consistently learn unique low-dimensional binary codes for all 1000 classes in ImageNet-1K using
only 20-bits (which is twice the information-theoretic limit of dlog2(1000)e). Next, we discuss the
learnt codebook’s intrinsic information about the classes and their structure.

3.2 Discovered Taxonomy and Visualizations

Figure 1: Discovered taxonomy over 50 classes of ImageNet-1K using the learnt 20-bit class codes. Related
species are well clustered while pushing away unrelated ones. Figure 3 in Appendix D contains the codebook.

After learning the 20-bit binary codebook for 1000 classes of ImageNet-1K, we used the class repre-
sentation from B(C) of the first 50 classes to discover an intuitive taxonomy through agglomerative
clustering [42]. Figure 1 shows the discovered hierarchy. This hierarchy effectively separates birds
from amphibians; frogs and chickens are on extremes of the taxonomy and brings species with shared
similarities closer (lizards & crocodiles; marine life). While the taxonomy is not perfect, the 20-bits
do capture enough important information that can be used downstream.

Figure 2 shows the pair-wise inner-product heat maps for all the 1000 classes using 20-bits and
2048-dimensional real representation; the comparison reveals that 20-bits indeed highlights the same
substructures as the higher dimensional real-valued embeddings. Appendix D has a more detailed
discussion about quantitatively evaluating the discovered hierarchy and more visualizations.

(a) 20-bit codes (b) 2048-d real representations

Figure 2: The pair-wise inner product heat maps of class representations a) learnt 20-bit codes & b) learnt 2048
dimensional real representations for the 1000 classes in ImageNet-1K. Similar sub structures are highlighted in
both heatmaps and often correspond to local hierarchy present in the classes thus making a case that 20-bit codes
distill enough information to capture hierarchy of the classes.

4 Applications

In this section, we discuss three applications of the learnt low-dimensional binary codes: 1) efficient
multi-class classification (Section 4.1), 2) efficient retrieval (Section 4.2), and 3) out-of-the-box
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out-of-distribution (OOD) detection (Section 4.3). We also present ablation studies on codebook
learning, feature separability and classification (Section 4.4).

4.1 Efficient Multi-class Classification

Recall that the proposed LLC algorithm outputs a) the learnt class codes (codebook), B(C) and
b) an encoder that produces instance codes, B(P · F (x; θF )) for x. We define a class codebook
as a collection of L binary vectors, one for each class in the dataset, that can then be used for
classification of a test instance x. We can use several “decoding" routines to classify an instance
x, given its encoding and the learnt codebook. Below we discuss two decoding schemes that are
diametrically opposite in terms of the inference cost. Also, note that the standard linear classification
with real-valued representation and classifiers scale as O(L) in terms of computational complexity
and model size.

4.1.1 Decoding Schemes

Exact Decoding (ED). Exact Decoding scheme expects the Hamming distance between the gen-
erated instance code, B(PF (x; θF )), and the ground truth class code, B(Ci) to be exactly 0. That
is, we can hash the class codes in a table, and then ED requires only a O(1) hash-table lookup for a
given instance. Consequently, the inference time for ED is nearly independent of L. Naturally, the
decoding scheme is highly stringent and would misclassify an instance if the instance binary code and
the ground truth code do not match in even a single bit. Surprisingly, this highly efficient decoding
scheme still provides non-trivial accuracy (see Table 1 and Section 4.1.2).

Minimum Hamming Decoding (MHD). Minimum Hamming Decoding is akin to the Maximum
Dot Product used by standard linear classifiers. For an instance code, we evaluate the Hamming
distance with all the L class codes and output the class with the least Hamming distance. Note
that the Hamming distance over binary codes can be computed using XOR operations that are
implemented significantly more efficiently than the floating-point operations [48]. Even though,
technically, computational complexity and model size of MHD scales as O(L) but the real-world
implementations should be an order of magnitude faster than standard classifiers. In fact, for large
number of classes L, the efficiency of MHD can be further improved by using approximate nearest
neighbour search [16, 7, 40]. Appendix A has the mathematical presentation of the decoding schemes.

See Section 5 for more discussion on potential decoding schemes. Also see Section 4.4 for ablation
studies about the two decoding schemes along with feature separability (linear vs Hamming).

4.1.2 Empirical Evaluation

ImageNet-1K [49] is a widely used image classification dataset with 1000 hierarchical classes. Our
classification experiments use ResNet50 [25] and are trained using the ∼1.3M training images.
Images were transformed & augmented with standard procedures [35, 60]. All the implementations
were in PyTorch [45] and experimented on a machine with 4 NVIDIA Titan X (Pascal) GPUs.

When applied to ImageNet-1K, the first phase of LLC, learnt a 20-bit codebook with 1000 unique
class codes, i.e., every class has its own distinct binary code. We warm start the second phase of LLC
by the learnt ResNet50 backbone along with the 20 dimensional projection layer. See Appendix C
for the hyperparameter values and other training details.

A key feature of LLC is that it jointly learns both the class codebook as well as instance codes. Several
existing techniques decouple this learning process where the codebook is constructed separately
and is then used to train the instance codes [28, 14, 3, 20, 1, 58]. We evaluate the advantage of
the joint learning approach of LLC by comparing its performance against three strong baselines:
i) Random codebook of 20-bits, ii) 20-bit CCA codebook [1, 58, 64] & iii) 20-bit SVD codebook.
Previous works [28, 14, 3] argued that random codebooks are competitive to the ones constructed
using side-information. 20-bit CCA and SVD codebooks aim to capture the hierarchy that is amiss in
the random codebook. The 20-bit SVD codebook is built using the SVD of 2048 dimensional linear
classifiers (for each class) in the pre-trained ResNet50, and binarizing it. 20-bit CCA codebook is the
binarized version of the transformed label embedding projected on to 20 components learnt using
CCA between 2048 dimensional representations of 50K samples from the ImageNet train set and
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Table 1: Classification performance on ImageNet-1K with
ResNet50 using various class codebooks for training.

Codebook Unique
Codes

ED
Accuracy (%)

MHD
Accuracy (%)

Random 20-bits 1000 64.07 66.91
CCA 20-bits 813 55.17 57.03
SVD 20-bits 969 65.12 69.18
LLC 20-bits (Ours) 1000 68.82 74.57

Table 2: Classification accuracy on ImageNet-1K
vs. bit length of the learnt class codebooks (§4.4).

LLC Length Unique
Codes

ED
Accuracy (%)

MHD
Accuracy (%)

15 bits 990 67.20 71.03
20 bits 1000 68.82 74.57
25 bits 1000 67.93 74.79
30 bits 1000 67.51 75.13

their one-hot label embeddings. Despite being able to capture the hierarchy information, both 20-bit
CCA/SVD codebooks suffer from clashes reducing their overall effectiveness.

Next, using the baselines codebooks and the corresponding learnt instance codes, we compute class
predictions for each test instance using the Exact Decoding (ED) & Minimum Hamming Decoding
(MHD) schemes mentioned in the previous section. We evaluate all the methods using top-1 accuracy
on the ImageNet-1K validation set. Baseline ResNet50 architecture represents the maximum accuracy
we can hope to achieve using binarized instance+class codes. Note that this baseline classifier
requires O(L) computation over 16-bit real numbers, and achieves Top-1 accuracy of 77%.

Table 1 compares the accuracy of LLC (with 20-bit codebook) against baseline codebooks mentioned
above. Note that MHD with LLC codebook is 74.5% accurate, i.e., despite using only 20-dimensional
binary representation it is only about 2.5% less accurate than standard ResNet50 that uses 2048 di-
mensional real-valued representation. Furthermore, we observe that compared to standard codebooks
like SVD, our jointly learnt codebook is 5% more accurate.

Interestingly, Exact Decoding (ED) – which is O(1) inference scheme – with LLC codebook is
nearly as accurate as the SVD codebook with MHD scheme and is about 12% more accurate than the
CCA codebook with ED scheme. Naturally, codebook length/dimensionality plays a critical role in
classification accuracy; see Section 4.4 for a detailed ablative study on this aspect. Finally, the gains
in efficiency should be even more compelling for problems with millions of classes [54].

4.2 Efficient Retrieval

The goal in retrieval is to find instances from a database that are most similar to a given query.
Traditional retrieval approaches, use a fixed metric to retrieve "similar points", with data structures
like LSH for efficient retrieval. Recent progress in Deep Supervised Hashing (DSH) [38] offer
significantly more compelling solutions by learning the hashing function itself. That is, DSH aims to
learn binary codes for each instance s.t. a pair of instances are embedded closely iff they belong to
the same class, and then learns the hashing function end-to-end using a small train set.

As LLC also learns instance codes to reflect class membership, we can directly use our learnt encoder
as a hashing function for given instances. For each query, the most relevant samples from the
database are retrieved based on the minimum Hamming distance. Similar to the decoding schemes in
classification, the retrieval can be optimized using approximate nearest neighbor search. Finally, the
efficiency gains provided by using bits instead of real numbers should enable deployment of LLC
based retrieval for efficient high recall portions of retrieval pipelines.

4.2.1 Empirical Evaluation

Following DSH literature, we evaluate hashing-based image retrieval on ImageNet-100, a benchmark
dataset created by Cao et al. [9]. ImageNet-100 has 100 classes randomly sampled from ImageNet-1K.
All the validation images of these classes are used as query images, all the training images (∼ 1300
per class) of these 100 classes are used as database images. Finally, 130 samples per class from the
database are used as the training set for learning binary codes or hashing functions.

We compare against HashNet [9] and Greedy Hash [53] for image retrieval using learnt instance
codes. HashNet learns the bit representations of instances using a pairwise optimization with positive
and negative instance pairs. HashNet is a representative baseline for an alternative way of learning
binary instance codes compared to LLC. On the other hand, Greedy Hash learns only the instance
codes using straight-through-estimator via the classification task. Note that LLC learns both class
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Table 3: Efficient image retrieval on ImageNet-100 us-
ing AlexNet compared using MAP@1000 (Appendix B)
across 16 – 64 bits.

Method 10 bits 16 bits 32 bits 48 bits 64 bits

HashNet [9] 0.1995 0.2815 0.4300 0.5270 0.5124
Greedy Hash [53] 0.2860 0.4247 0.5412 0.5720 0.5895
LLC (Ours) 0.3086 0.4305 0.5565 0.5749 0.6000

Table 4: Comparison of LLC based retrieval
vs real-valued representations with ResNet50 on
ImageNet-100 using MAP@1000.
Representation 8 dims 10 dims 64 dims

LLC (1 bit) - 0.6458 0.6773
Real (16 bits) 0.5041 0.6657 0.7794

codes as well as instance codes differentiating it from Greedy Hash style methods. Learnt instance
codes are a byproduct of efficient classification as opposed to baselines that optimize for them.

We use the Mean Average Precision (MAP@1000) metric for evaluation. The MAP@1000 calculation
code of HashNet [9] is erroneous and has propagated to several papers in the literature. We use
the corrected version, hence the accuracy numbers are different from the original paper. Please
see Appendix B for the corrected version, the changes required along with an example and a brief
discussion. We used the publicly available pre-trained HashNet models [10] and Greedy Hash [53]
code to recompute the MAP@1000.

Following HashNet [9], we use AlexNet [31] as the backbone and warm-start it with a pre-trained
model on ImageNet-1K. We add a projection layer to the backbone and learn the instance and class
codes. We also report retrieval numbers with ResNet50 [25] and compare LLC based retrieval
numbers to learnt real-valued representations. Please see Appendix C for the training details and
hyperparameters of efficient retrieval pipelines.

Table 3 shows the performance (evaluated using MAP@1000) for HashNet, Greedy Hash, and LLC
across various code lengths. LLC outperforms HashNet across all code lengths (16 – 64) by at least
4.79% on MAP@1000. LLC is also better than Greedy Hash across all the bit lengths. LLC also
outperforms 16-bit HashNet by 2% & 15% using only 10 & 16 bits respectively. Finally, 32-bit LLC
comfortably outperforms both 48 & 64-bit HashNet showcasing the effectiveness of our learnt tight
bit codes. Note that LLC, learning both instance and class codes, is effective in retrieval even though
it was designed for classification.

We repeat the retrieval experiments with ResNet50. Table 4 shows the MAP@1000 for LLC with 10
and 64 bits along with the same dimensional real-valued representations. The 10-bit LLC is only 2%
lower than 10 dimensional real-valued representation even though theoretically, the cost associated
with 10-bit LLC based retrieval is about 256× less than 10 dimensional real representations.

The 64 bit and 10 bit LLC outperforms 10 and 8 dimensional real-valued representations respectively
at a much cheaper retrieval cost, at least by an order of magnitude. More discussion about the use
of binary codes for retrieval at a large scale can be found in Section 5. Finally, 10-bit LLC with
ResNet50 outperforms the best performing AlexNet based models for the same task, suggesting
ResNet50 is a more appropriate architecture for benchmarking DSH literature.

4.3 Out-of-Distribution (OOD) Detection

For a multi-class classifier, detecting an OOD sample is very important for robustness [26] and
sequential learning [55]. Multi-class classifiers are augmented with OOD detection capability by
setting a threshold on heuristics like maximum logit which is tuned using a validation set.

We focus on the scenario where the ratio of in-distribution to out-of-distribution samples in the
validation set is not representative of the deployment. This throws off the methods that try to
maximize metrics, F1, using a validation set. Our learnt class codebook from LLC comes with
over-provisioning (for ease of optimization) resulting in unassigned codes. These unassigned codes
can be treated as OOD out-of-the-box with no tuning whatsoever. That is, we classify an instance as
OOD if its instance code does not match exactly with the code of a class in our learnt codebook.

Appendix E discusses the OOD detection experiments on ImageNet-750 [55] & MIT Places [65]. At a
high level, LLC based out-of-the-box OOD detection (with a learnt 20-bit codebook on ImageNet-1K)
achieves nearly the same OOD detection accuracy as a baseline [26] that tries to maximize F1 using a
validation set. We would like to stress that while such a method needs ≈ 3000 points in the validation
set, our method requires no samples, which is critical in several practical settings.
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4.4 Ablation Studies

Classification Accuracy vs Number of Bits. Table 2 shows the trade-off in classification accuracy
with the variation in the length of the learnt codebook for ImageNet-1K. LLC learns a 15-bit codebook
with only 990 unique codes leading to a loss of accuracy due to code collapse in both ED and MHD
schemes (1.62% & 3.54% compared to 20-bit codebook respectively). An interesting observation is
that the ED accuracy gradually goes down after 20-bits while the MHD accuracy keeps on increasing.
The phenomenon of increasing accuracy with MHD is probably due to the increase in the capacity of
both instance and class codes. However, the decrease in ED accuracy after 20-bits can be explained
through the hardness in exactly predicting every bit in the instance code to match the ground truth
class code. Our classification model with 20-bits on average gets 19.2 bits correct but the model with
30-bits only gets 28.5 bits right. This increase in uncertainty coupled with the stringent ED scheme
leads to a slight dip in accuracy as the code length increases. However, this also provides us with a
path for more accurate decoding schemes while being efficient as discussed in Section 5.

Classification Accuracy vs Faster Codebook Learning. Codebook learning phase of LLC is
expensive, this motivated us to speed up codebook learning at a minimal loss in accuracy. One way
is to warm-start the codebook using the ones built with SVD/CCA (see Section 4.1). While these
codebooks suffer from code collapse, with further training, they start to learn 1000 unique codes
quickly. Using these final codebooks gets to a comparable (1% drop) accuracy as the 20-bit learnt
LLC codebook but at a relatively cheaper training. Another option is to use only a portion of the
data and a much smaller network to learn the codebook. We sampled 50K training images and use
a MobileNetV1 [27] (which has about 6× less parameters and compute than ResNet50) to learn a
20-bit codebook which gets to ED and MHD accuracy of 66.62% & 72.55% which is only 2% lower
than the end-to-end learnt codebook but at a fraction of the training cost (3 hrs vs 2 days).

Linear vs Hamming Separability. Fitting a deep neural network to the learnt codebook for clas-
sification results in warping of the feature space considerably. The final classification space is a
hypercube with the vertices being apart by Hamming distance of 1. To verify linear separability, we
take the learnt, frozen ResNet50 trained for the 20-bit classification problem and fit a linear classifier
on top of the 2048 dimensional features. Linear classifier quickly reaches a top-1 accuracy of 75.51%.

The opposite does not seem to be true. We extract and freeze the backbone of a pre-trained ResNet50
and train a projection layer to fit the 20-bit learnt codebook. This gets to top-1 accuracy of only about
21% with the ED scheme. However, we also observed that unfreezing and finetuning the last 3 layers
of the backbone recovers the top-1 ED accuracy to roughly 68%.

These experiments show 1) Hamming separability inherently enables linear separability, 2) Linear
separability does not imply Hamming separability & 3) with enough overparameterization, linearly
separable space can be warped to support Hamming separability. Hamming separability automatically
provides linear separability with increased accuracy of ∼ 1% over the MHD scheme which allows
for an option for using a more powerful yet simple classifier, in case of accuracy requirements.

Independent vs Nested Codebook Learning. Consider a scenario with varied computational
budgets for classification. We could either train independent k-bit models (eg., k = 20, 25, 30) and
use them according to the budget, or we could learn a single nested codebook-based model that can
be readily adapted to any of these settings. While training a codebook of larger bit length like k = 30,
we can ensure that the first m-bits, m < k, also form a codebook at minimal additional cost. We were
able to stably train a 30-bit codebook and also extract 20, 25-bit codebooks from it all of which are as
accurate as independently trained codebooks. These nested codebooks have the potential to be used
based on the computational resource availability for efficient classification without having to retrain.

5 Discussion and Conclusions

We designed LLC to learn low-dimensional binary codes for instances as well as classes, and utilized
them in applications like efficient classification, retrieval, OOD detection. A key finding is that
combining class code learning with ECOC framework to learn instance code leads to a stable training
system that can accurately capture the semantics of the class data despite just 20-dimensional code.
Traditionally, methods like HashNet, KLSH [33] attempt to learn hashing function using pairwise
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loss functions by embedding instances such that points from the same class are embedded closely
and points from different classes are far. But such formulations are hard to optimize, due to the risk
of embedding collapse. We observe that LLC by using instance-wise formulation can train stably
with significantly higher performance. Another fascinating observation is that while architectures like
ResNet50 have large intermediate (2048 dimensional real) representations, they can be compressed to
just 20 bits without significant loss in accuracy! Even though quantization [48] literature demonstrates
strong compression of representations, we believe such stark compression has been elusive so far and
is worth further exploration from the efficient inference viewpoint.

Limitations. Our visualization (see Figure 4 in Appendix D) indicates that each bit does not
correspond to some easily interpretable attributes, unlike DBC [47]. We believe incorporating priors
with weak supervision as well as cross-modal learning could help LLC get past this limitation.

ED and MHD schemes are on two ends of the computation vs accuracy spectrum and do not transition
smoothly. Designing decoding schemes that can compromise between these two extreme decoding
schemes might be able to address this limitation.

Strong encoders are needed to warp the feature space to ensure Hamming separability. For example,
using a 20-bit learnt codebook with ED scheme, ResNet50 gets to 68.8% top-1 accuracy whereas
MobileNetV1 can only reach 53.23%. This also ties into the argument that classification is a trade-
off between encoder and decoder costs. Making decoders efficient and cheap, puts the burden on
encoding the information in the right way and higher expressivity often helps in that cause.

Future Work. There are several exciting directions that we would like to explore. In principle,
LLC can easily incorporate side-information when needed with simple additional losses during
training. The additional regularization losses can also help in incorporating natural constraints on the
codebook [14, 3] or can enable attribute-based class codes for interpretablity [21, 22, 37] making
them exciting directions to explore. LLC algorithm can also be used to encode instances of multiple
modalities like audio, visual, language to the same learnt low-dimensional binary space. This might
help in effective cross-modal supervision along with retrieval among various other applications.

Potential in Large-Scale Applications. While our focus was on designing low-dimensional accu-
rate binary codes, several studies [48, 29] have shown that efficiency afforded by bit-wise computation
over floating-point computation can lead to almost an order of magnitude speed-up. Furthermore,
as the number of classes increases, the learning of class codebooks helps in training representations
in sublinear costs [13] along with sublinear inference (in L). We expect LLC algorithm to have
its efficiency benefits outweigh the accuracy drop for large multi-class/multi-label problems, like
objection recognition using ImageNet-22K [17], document tagging [54, 46] and instance classifica-
tion [59]. The efficiency aspect of the binary codes has not been fully explored in this paper as the
main computational bottleneck for ImageNet-1K classification is the deep neural network featurizer.

Lastly, LLC based efficient retrieval can be used for the initial high-recall shortlisting of a search
pipeline, which is followed by high precision models operating on more expressive yet expensive
embeddings. We leave practical demonstration of such a system at web-scale for future work.
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A LLC Decoding Schemes for Classification & Binarization Function

Algorithm 2 Inference using Exact Decoding (ED)

Input: x ∈ X , F ( · ; θF ), C and P
Output: `∗ ⊆ [L]

1: g(x)← B(P · F (x; θF ))
2: `∗ ← {` ∈ [L] : B(C`) = g(x)}

Algorithm 3 Inference using Minimum Hamming Decoding (MHD)

Input: x ∈ X , F ( · ; θF ), C and P
Output: `∗ ⊆ [L] (`∗ 6= ∅)

1: g(x)← B(P · F (x; θF ))
2: `∗ ← argmin`∈[L]

1
2‖B(C`)− g(x)‖1

Algorithm 4 PyTorch code for Binarization B(·) function with straight-through-estimator (STE).

class Binarize(autograd.Function):
@staticmethod
def forward(ctx, weight):

out = weight.clone()
# binarizing in the forward pass
out[out >= 0] = 1
out[out < 0] = -1

return out

@staticmethod
def backward(ctx, g):

# send the gradient g straight-through on the backward pass.
return g, None

B Corrected MAP@1000 Metric for Image Retrieval.

The reported MAP@1000 metric in Cao et al. [9] has an error that results in the wrong estimation
of retrieval performance of the learnt hash functions. This error has propagated into many of the
follow-up papers rendering the MAP numbers presented in them non-transferable. Most of the papers
after HashNet have continued to use the same metric resulting in this situation. The code for the
metric is provided as part of the open-sourced codebase of HashNet1.

Everything until the computation of Precision@k (k ∈ [1000]) is correct. However, the reported
metric computes AP@1000 as follows:

AP@1000 =

∑
k P@k ∗ rel(k)∑

k rel(k)

where rel(k) is an indicator function if the sample at k-th position is relevant.
∑
k rel(k) is the total

number of relevant samples in all the 1000 retrieved samples. It should be noted that every query
has around 1300 relevant documents and all of them can not be retrieved within 1000. MAP@k
is just the mean of all the AP@k for all the queries. We explain the error using a simple example.
Suppose a retrieval problem allows to retrieve 5 samples from a database where each query has
10 relevant samples. And for a given query, let us say method 1 gives retrieves the top-5 samples
with the following relevance [1,0,0,0,0]. And method 2 retrieved with samples with the relevance
[1,0,0,1,1].

1https://github.com/thuml/HashNet/blob/master/caffe/models/predict/imagenet/
predict_parallel.py#L20
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Table 5: Image retrieval performance on ImageNet-100 using AlexNet. RMAP: Reported MAP@1000 as in
HashNet [9]. CMAP: Corrected MAP@1000. Please see Appendix B for the details. RMAP and CMAP are not
well correlated making the reported numbers from literature hard to compare.

Method 10 bits 16 bits 32 bits 48 bits 64 bits

RMAP CMAP RMAP CMAP RMAP CMAP RMAP CMAP RMAP CMAP

HashNet [9] 0.3721 0.1995 0.4634 0.2815 0.5915 0.4300 0.6548 0.5270 0.6542 0.5124
LLC (Ours) 0.4815 0.3086 0.5617 0.4305 0.6587 0.5565 0.6750 0.5749 0.6932 0.6000

Using the reported metric, method 1 has an AP@5 of 1.0 (with just 1 relevant sample out of 5). But
method 2 with 2 more relevant samples along with the top retrieved sample and has an AP@5 of 0.7.
Even with an objectively better retrieval, method 2 has a lower AP@5 score than method 1. This
results in an unfair evaluation of methods where methods with poor recall but a few precise retrievals
will outperform methods that have both high precision and recall.

The fix is simple and is just the use of standard MAP@k metric 23.

AP@1000 =

∑
k P@k ∗ rel(k)

min(total relevant samples, 1000)
.

The reason we need the min(total relevant samples, 1000) term in the denominator is that, with 1000
retrievals, it is impossible to retrieve all the 1300 relevant documents, so we divide by the most
possible instead of all the relevant documents. With this metric, method 1 now has an AP@5 of
0.2, and method 2 has an AP@ 5 of 0.42 which reflects the reality of the retrieval. The only change
needed is the replacement of “relevant_num” in this line4 with “R” for the ImageNet-100 setting.

Table 5 presents a comparison of both MAP@1000 computed as reported, RMAP and corrected,
CMAP for LLC and HashNet. This shows a stark drop in the MAP values along with a non-intuitive
correlation between RMAP and CMAP making off-the-shelf comparisons harder. Lastly, the MAP
computation from HashNet also skipped the AP values when none of the relevant documents were
retrieved (which is extremely rare at 1000 retrieval samples) but the AP score should have been 0 for
that particular case. We fixed that in both RMAP and CMAP metrics reported here.

C Hyperparameters

Classification The first phase of the classification pipeline, ie., codebook learning, uses the hyper-
parameters - SGD+Momentum optimizer, batch size of 256, cosine learning rate routine, and 100
epochs - used in training the standard 1000-way linear classifier using a ResNet50 [60, 35]. However,
given the warm-starting of the second phase using the learnt backbone and the availability of the
learnt codebook, the training routine of the second phase runs for about 25 epochs with a reduced
learning rate of 0.01.

Retrieval As we start with pre-trained models for retrieval. We use the same hyper-parameters as
the second phase of the classification pipeline except for the learning rate. We use a much learning
rate of 0.01 for AlexNet and 0.1 for ResNet50. The second phase of learning instance codes uses
a reduced learning rate of 0.005 and 0.01 for AlexNet and ResNet50 respectively. The rest of the
hyperparameters and training mechanisms are the same as the standard ResNet50 training.

2http://sdsawtelle.github.io/blog/output/mean-average-precision-MAP-for-recommender-systems.
html#Average-Precision

3https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)
#Average_precision

4https://github.com/thuml/HashNet/blob/master/caffe/models/predict/imagenet/
predict_parallel.py#L42
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D Quantitative Evaluation of Hierarchy & More Visualizations

Quantitative evaluation of the discovered hierarchies is a hard problem because we can not directly
compare ours to the original ImageNet hierarchy which is not binary unlike ours. However, one proxy
way is to use the pair-wise inner-product heat map (see Figure 2) of 2048 dimensional representation
as the base and compare using row-wise (class-wise) ranking metrics like Spearman’s rank correlation
coefficient in which the learnt 20-bit codebook has a mean coefficient across all class of 0.3 compared
to 0.005 of a random codebook. Lastly, the number of unique class codes (ideally should be equal
to L) learnt as part of the codebook plays an important role as the code collapse leads to loss of
information about multiple classes resulting in unclear decoding when required.

It would be exciting to compare the discovered taxonomy to the original WordNet [41] hierarchy
based on which the ImageNet-1K was curated. However, the major roadblock comes when we
realize that our discovered hierarchy is binary while WordNet is k-ary making fair comparison almost
impossible. We also explored the idea of cost-sensitive metrics [18] based on hierarchy to evaluate
the classification but fell short due to the same limitation of unfairness in comparing binary to k-ary.

Lastly, we also wanted to see if the learnt bit codes/hyperplanes result in splitting the images by
discovering (potentially interpretable) attributes as with previous works [47]. However, unlike
previous works, which use simple features for encoding images, we learn a highly non-linear

Figure 3: Discovered hierarchy on 50 classes of ImageNet-1K along with the corresponding class codes. Purple
is +1 and beige is −1 in each class code corresponding to the species in the dendrogram.

(a) (b)

Figure 4: The hyperplanes of bit numbers (a) 0 & (b) 16 visualized using the images being split on either side
+1,−1 (left and right of the white bar in each of (a) and (b)), and are sorted using the probability. These splits
do not show any trivial attributes being discovered, but often we find bits which do fine grained classification
between close classes.
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representation using deep neural networks. This resulted in learnt bit code hyperplanes that often
split the images using highly non-linear, non-trivial, and non-interpretable attributes. Figure 4 shows
the images on either side of the hyperplane of the corresponding bit sorted by the confidence of
being +1 or −1 (probability from the logistic function for binary classification). While, with deeper
analysis and further visualization, we might be able to deduce what is being learnt, but at the surface
level, without explicit learning with priors, the discovered attributes are non-interpretable affecting
zero-shot and few-shot capabilities of LLC based models.

E Out-of-Distribution (OOD) Detection Experiments

OOD detection for a multi-class classification model can be achieved by simple baselines that set a
threshold on a heuristic based on the prediction probabilities [26]. For the classification models trained
with ResNet50 on ImageNet-1K, we evaluate on two datasets which we consider as out-of-distribution
to ImageNet-1K that has 50K samples as the in-distribution validation set. Our method uses a 20-bit
classification model while the baselines use the pre-trained ResNet50 with linear classifier.

ImageNet-750 [55] is a long-tailed dataset of 750 classes with about 69K samples. These 750 classes
were sampled from ImageNet-22K [17] ensuring no clash with the ImageNet-1K subset. All the
instances in this dataset are OOD to a model trained on ImageNet-1K. MIT Places [65] dataset
is aimed at scene recognition rather than object recognition, unlike ImageNet-1K. All the ∼18K
samples in the validation set of Places365 were also treated as OOD to ImageNet-1K during this
evaluation.
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Figure 5: OOD detection performance when the validation set is not representative of the deployment setting
for a) ImageNet-750 & b) MIT Places datasets evealuted on a ResNet50 model trained for ImageNet-1K.

As mentioned in Section 4.3, LLC based OOD detection looks at the encoded instance code and
classifies a sample as OOD in case of a missing exact match in the learnt codebook. This does not
require any OOD samples whatsoever apriori to the deployment. We consider two baselines: a)
tuning of the threshold on the probability of maximum logit to maximize F1 score using a validation
set with OOD examples [26], and b) setting a conservative threshold on the probability of maximum
logit which is 1 standard deviation greater than the mean probability of the maximum logit using
just 50 OOD examples. Note that the performance of the first baseline varies with i) the ratio of in
distribution to OOD samples in the validation set that is being used for tuning the threshold, ii) the
setup with a different validation to test out-of-distribution ratios.

Our primary focus is on the setting where the validation set used for tuning thresholds is not
representative of the test set. In this setting the in distribution samples are constant, all the 50K
samples. We only vary the number of OOD samples while tuning the threshold. The final OOD
performance using the F1 score was measured on a test set with all the 50K in distribution samples
along with a random 10K samples from the OOD set (ImageNet-750 & MIT Places).

Figure 5 captures the effectiveness of LLC based OOD detection in the setting where validation is
not representative of test. Our out-of-the-box OOD detection method is at least as effective as the
baselines. Remarkably, the tuning of the threshold to maximize F1 using a validation set requires at
least 3000 OOD samples to even get close to our method which requires no samples.
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The second setting is where the validation and test sets have the same number of OOD samples for a
fixed in-distribution set. Here the validation and test phases have same number of re-sampled OOD
instances. All the 50K in distribution samples are used for both validation and testing.

Figure 6 shows that LLC based OOD detection is as competitive as the tuned threshold baseline [26]
which is optimizing F1 for the exact same ratios. These experiments help in arguing that LLC based
classification models have a strong, sample-efficient inherent OOD detection capability. which can
be used for sequential learning, to detect and continuously add new classes, along with robustness.
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Figure 6: OOD detection performance when the validation set is representative of the deployment setting for a)
ImageNet-750 & b) MIT Places datasets evaluated on a ResNet50 model trained for ImageNet-1K.
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