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ABSTRACT
Edge sensing with micro-power pulse-Doppler radars is an emer-
gent domain in monitoring and surveillance with several smart city
applications. Existing solutions for the clutter versus multi-source
radar classification task are limited in terms of either accuracy or
efficiency, and in some cases, struggle with a trade-off between
false alarms and recall of sources. We find that this problem can be
resolved by learning the classifier across multiple time-scales. We
propose a multi-scale, cascaded recurrent neural network architec-
ture, MSC-RNN, comprised of an efficient multi-instance learning
(MIL) Recurrent Neural Network (RNN) for clutter discrimination
at a lower tier, and a more complex RNN classifier for source clas-
sification at the upper tier. By controlling the invocation of the
upper RNN with the help of the lower tier conditionally, MSC-RNN
achieves an overall accuracy of 0.972. Our approach holistically
improves the accuracy and per-class recalls over machine learn-
ing models suitable for radar inferencing. Notably, we outperform
cross-domain handcrafted feature engineering with purely time-
domain deep feature learning, while also being up to ∼3× more
efficient than a competitive solution.

CCS CONCEPTS
• Computing methodologies → Neural networks; Supervised
learning by classification; • Computer systems organization →
Sensor networks; Real-time system architecture; System on a
chip.

KEYWORDS
Radar classification, recurrent neural network, low power, edge
sensing, range, joint optimization, real-time embedded systems
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1 INTRODUCTION
With the rapid growth in deployments of Internet of Things (IoT)
sensors in smart cities, the need and opportunity for computing
increasingly sophisticated sensing inferences on the edge has also
grown. This has motivated several advances in designing resource-
efficient sensor inferences, particularly those based on machine
learning and especially deep learning. The designs, however, en-
counter a basic tension between achieving efficiency while pre-
serving predictive performance that motivates a reconsideration of
state-of-the-art techniques.

In this paper, we consider a canonical inference pattern, namely
discriminating clutter from several types of sources, in the context
of a radar sensor. This sort of N +1–class classification problem,
where N is the number of source types, has a variety of smart
city applications, where diverse clutter is the norm. These include
triggering streetlights smartly, monitoring active transportation
users (pedestrians, cyclists, and scooters), crowd counting, assistive
technology for safety, and property surveillance. As an example,
streetlights should be smartly triggered on for pedestrians but
not for environmental clutter such as trees moving in the wind.
Similarly, property owners should be notified only upon legitimate
intrusions but not for passing animals.

The radar is well-suited in the smart city context as it is pri-
vacy preserving in contrast to cameras. Moreover, it consumes
low power (∼15mW), because of which it can be deployed at op-
erationally relevant sites with little dependence on infrastructure,
using, for instance, a small panel solar harvester or even a modest
sized battery, as shown in Figure 1. Experiences with deploying
sensors in visionary smart city projects such as Chicago’s Array
of Things [6, 38] and Sounds of New York City [5] have shown
that wired deployments on poles tend to be slow and costly, given
constraints of pole access rights, agency coordination, and labor
unions, and can sometimes be in suboptimal locations. Using a
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(a)Micro-power PDR system (b) Solar harvested Signpost plat-
form supporting low power sen-
sors [3]

Figure 1: The micro-power pulse-Doppler radar (PDR) de-
vice can be independently deployed or interfaced with exist-
ing multi-sensor smart city platforms such as Signpost (fig-
ure adapted from [3], Copyright ©2019 ACM, Inc.)

low-power sensor that is embedded wirelessly or simply plugged
in to existing platforms while imposing only a nominal power cost
simplifies smart city deployment.

Table 1 illustrates an efficiency-accuracy trade-off for the canon-
ical inference pattern with N = 2, wherein clutter is distinguished
from human and other (i.e., non-human) sources. Themore accurate
deepmodels, the Convolutional Neural Network (CNN) [23] and the
Long Short-TermMemory (LSTM) [17], that wemachine-learned for
this 3-class classifier from a reference dataset are significantly less
efficient, in terms of speed and therefore power consumption. In con-
trast, the more efficient shallow solution, Support Vector Machine
(SVM), is significantly less accurate. While the SVM classifier has
been implemented to operate in near real-time on the Cortex-M3
single-microcontroller processor in the device depicted in Fig. 1(a),
neither the CNN nor the LSTM per se yield a near real-time im-
plementation. To implement deep models in near real-time on the
M3, we therefore consider model optimization with recent state-
of-art-techniques such as fast gated RNNs (FastGRNN) [26] and
Early-exit Multi-Instance RNNs (EMI-LSTM and EMI-FastGRNN)
[10]. However, Table 1 illustrates that the trade-off remains: the
best accuracy we achieve, namely with FastGRNN, has significantly
lower efficiency than the best efficiency achieved, namely with
EMI-FastGRNN, but the latter’s accuracy is comparatively worse.
Problem Statement. In this work, we investigate alternative op-
timizations of deep models for the above classification task that
achieve both high accuracy and speed. In doing so, we do not wish
to sacrifice the recall performance for achieving high precision. For
instance, radar sensing applications require that the clutter recall
be very high so that there are minimal false alarms. However, a so-
lution that restricts false alarms at the cost of detectability (i.e., low
source recall, where a source could be either human or non-human)
would be undesirable as it would have limited applicability in the
smart city contexts discussed above.
Solution Overview. The N +1-class radar problem, where the
+1-class is clutter, conflates discrimination between classes that
are conceptually different. In other words, discriminating clutter
from sources has a different complexity from that of disambiguating
source types. This insight generalizes when the sources themselves
are related by a hierarchical ontology, wherein different levels of

Table 1: Trade-offs in accuracy and runtime efficiency for
the 3-class radar problem (window length 1s, feature com-
putation overhead ignored for SVM, dataset andmachine ar-
chitecture details are in Section 5)

ML Model Accuracy FLOPS Fits on Cortex-M3?
SVM (15 features) 0.85 37K Yes
LSTM 0.89 100K No
CNN (1s FFT) 0.91 1.3M No
EMI-LSTM 0.90 20K No
EMI-FastGRNN 0.88 8K Yes

source types involve concepts of correspondingly different com-
plexity of discrimination. By way of example, in the 3-class clutter
vs. human vs. non-human classification problem, discriminating
clutter from sources turns out to be simpler than discriminating
the more subtle differences between the source types. Using the
same machine architecture for 3 classes of discrimination leads
to the accuracy-efficiency trade-off, as the last two rows of Table
1 indicate. A more complex architecture suffices for discriminat-
ing among source types accurately, whereas a simpler architecture
more efficiently suffices for discriminating clutter from sources, but
hurts the accuracy of discriminating between source types.

We, therefore, address the problem at hand with an architecture
that decomposes the classification inference into different hierar-
chical sub-problems. For the 3-class problem, these are: (a) Clutter
vs Sources, and (b) Humans vs. Non-humans given Sources. For
each sub-problems we choose an appropriate learning architecture;
given the results of Table 1, both architectures are forms of RNN
albeit with learning at different time-scales. The lower tier RNN for
(a) uses a short time-scale RNN, the Early-exit Multi-Instance RNN
(EMI-FastGRNN) [10, 26], whereas the higher tier for (b) uses a
longer time-scale RNN, a FastGRNN [26], which operates at the
level of windows (contiguous, fixed-length snippets extracted from
the time-series) as opposed to short instances within the window.
The upper tier uses the features created by the lower tier as its in-
put; for loss minimization, both tiers are jointly trained. To further
improve the efficiency, we observe that source type discrimination
needs to occur only when a source is detected and clutter may be
the norm in several application contexts. Hence, the less efficient
classifier for (b) is invoked only when (a) discriminates a source: we
refer to this as cascading between tiers. The joint training loss func-
tion is refined to emulate this cascading. We call this architecture
Multi-Scale, Cascaded RNN (MSC-RNN).
Contributions. Our proposed architecture exploits conditional
inferencing at multiple time-scales to jointly achieve superior sens-
ing and runtime efficiency over state-of-the-art alternatives. To the
best of our knowledge, this approach is novel to deep radar systems.
For the particular case of the 3-class problem, MSC-RNN performs
as follows on the Cortex-M3:

Accuracy Clutter
Recall

Human
Recall

Non-human
Recall FLOPS

0.972 1 0.92 0.967 9K
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Its accuracy and per-class recalls are mostly better than, and in
remaining cases competitive with, the models in Table 1. Likewise,
its efficiency is competitive with that of EMI-FastGRNN, the most
efficient of all models, while substantially outperforming it in terms
of sensing quality. We also validate that this MSC-RNN solution is
superior to its shallow counterparts not only comprehensively, but
at each individual tier as well. The data and training code for this
project are open-sourced at [33, 35].

Other salient findings from our work are summarized as follows:
(1) Even with deep feature learning purely in the time-domain,

MSC-RNN surprisingly outperforms handcrafted feature en-
gineering in the amplitude, time, and spectral domains for
the source separation sub-problem. Further, this is achieved
with 1.75-3× improvement in the featurization overhead.

(2) The Tier 1 component of MSC-RNN, which classifies legiti-
mate sources from clutter, improves detectability by up to
2.6× compared to popular background rejection mechanisms
in radar literature, even when the false alarm rate is con-
trolled to be ultra-low.

(3) MSC-RNN seems to tolerate the data imbalance among its
source types better than compared EMI-RNN models. In
particular, it enhances the non-dominant human recall by
up to 20%, while simultaneously maintaining or improving
the dominant non-human recall and overall accuracy.

Organization. In Section 2, we present related research and out-
line the basics of micro-power radar sensing in Section 3. In Section
4, we detail the various components in our solution and discuss
the training and inference pipelines. We provide evaluation and
prototype implementation details in Sections 5 and 6 respectively.
We conclude and motivate future research in Section 7.

2 RELATEDWORK
Shallow and Deep Radar Sensing. Micro-Doppler features have
been used in myriad radar sensing applications ranging from clas-
sification [15, 20, 27] to regression [14]. Most of these applications
employ the short-time Fourier transform (STFT) input represen-
tation for analyzing micro-Doppler signatures. Although shallow
classifiers can be computationally cheaper than deep solutions, the
spectrogram generation over a sliding window for the STFT incurs
significant computational overhead for real-time applications on
single microcontroller devices. In order to decrease the computa-
tional overhead, different feature extraction methods [18, 30] have
been investigated in the past. Notably, feature engineering not only
requires sophisticated domain knowledge, but also may not transfer
well to solutions for other research problems. Moreover, selection
of relevant and non-redundant features requires care for sensing
to be robust [34]. In recent years, there has been significant use
of deep learning in radar applications. Most works with architec-
tures like CNNs and autoencoders use spectrogram-based input
[19, 21]. The authors of [28] generate a unique spectral correla-
tion function for the Deep Belief Network to learn signatures from.
The pre-processing needed in these applications and the result-
ing model sizes make them unsuitable for single microcontroller
devices. Therefore, we use raw time-series data in conjunction
with RNN variants to make our deep learning solution faster and

more efficient in addition to avoiding spectrogram computation
altogether.
Efficient RNN. The ability of RNNs in learning temporal features
makes them ubiquitous in various sequence modeling tasks. They,
however, often suffer from training instabilities due to the exploding
and vanishing gradient problem (EVGP) [31]. Gated RNNs like
LSTMs [17] and GRUs [8] circumvent EVGP and achieve the desired
accuracy for a given task, but compromise on model sizes and
compute overheads, making them unattractive for real-time, single
microcontroller implementations. Recently, FastGRNN [26] has
been proposed to achieve prediction accuracies comparable to gated
RNNs while ensuring that the learned models are significantly
smaller for diverse tasks. The hierarchical classifier solution we
present in this paper is based on this architecture.
Multi-Instance Learning and Early Classification. MIL is a
weakly supervised learning technique that is used to label sub-
instances of a window. MIL has found use in applications from
vision [40] to natural language processing (NLP) [22]. It enables
a reduction in the computational overhead of sequential models
like RNNs by localizing the appropriate activity signature in a
given noisy and coarsely-labeled time-series data along with early
detection or rejection of a signal [10]. We use it as our lower-tier
classifier for clutter versus source discrimination.
Multi-Scale RNN. One of the early attempts to learn structure in
temporally-extended sequences involved using reduced temporal
sequences [16] to make detectability over long temporal intervals
feasible in recurrent networks [29, 36]. With the resurgence of
RNNs, multi-scale recurrent models are being used to discover the
latent hierarchical multi-scale structure of sequences [9]. While
they have been traditionally used to capture long-term dependen-
cies, we use them to design a computationally efficient system by
incorporating different scales of temporal windows for the lower-
and upper-tier RNNs. By conditioning the Tier 2 classifier, which
works on longer windows and is hence bulkier, we make sure that
the former is invoked only when necessary, i.e., when Tier 1 predicts
a source.
Compression Techniques. Sparsity, low-rank, and quantization
have been proven to be effective ways of compressing deep ar-
chitectures like RNNs [39, 41] and CNNs [13, 25]. We incorporate
low-rank representation, Q15 quantization, and piecewise-linear
approximation [26] to make MSC-RNN realizable on Cortex-M3
microcontrollers.

3 RADAR AND CLASSIFIER MODELS
3.1 Micro-power Radar Model
The monostatic PDR sensor depicted in Figure 1 has a bandwidth
of nearly 100 MHz and a center frequency at about 5.8 GHz. It is a
short-range radar with an anisotropic radiation pattern yielding a
maximum detection range of ∼13m. Sensing itself consumes 15mW
of power, not counting the inference computation on the associated
microcontroller. The radar response is low pass filtered to 100 Hz;
hence the output is typically sampled at rates over 200Hz.

The output signal from the radar is a complex time-series with
In-phase (I) and Quadrature (Q) components. When a source moves
within the detection range, in addition to the change in received
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Figure 2: SVM classifier data and control planes; control
signal-response pairs are color coded

power, the phase of this signal changes according to the direction
of motion. Consequently, its relative displacement can be estimated
with high accuracy (typically, sub-cm scale), and a rich set of fea-
tures can be derived by tracking its phase evolution over time.

3.2 Classifier Architectures
3.2.1 Input and Feature Representation. The radar classifier system
uses the aforementioned complex time-series as input. Extant end-
to-end architectures for micro-power radar sensing mostly eschew
deep feature learning for cheap handcrafted feature engineering in
the amplitude, time, and spectral domains [14, 34]. However, these
solutions incur significant featurization overhead; this is exempli-
fied in Table 2 on 1-second snippets extracted from the complex
time-series. Even ignoring the SVM computation latency, it can
be seen that the main computation bottleneck is this incremental
overhead which results in >30% duty cycle on the Cortex-M3, of
which ∼10% constitutes the FFT overhead alone.

Table 2: Computation overheads in a shallow (SVM) radar
solution on Cortex-M3 (10 features, 1s windows)

Component Latency (ms)
FFT 80
Incremental feature computation 212
SVM inference (700 SVs) 55

3.2.2 Shallow Classifier Architecture. As shown in Figure 2, a proto-
typical shallow radar classifier system consists of three subsystems:
(i) a displacement detector for discriminating clutter vs. sources, (ii)
an incremental featurizer, (iii) an end inference engine that discrim-
inates source types, and (iv) a composition manager that handles
their interactions. The displacement detector thresholds unwrapped
phase over incoming windows of radar data ( 12 s or 1s) to detect
legitimate source displacements in the scene, filtering in-situ clutter
that tends to yield self-canceling phase unwraps. When a source
displacement is speculatively detected, the featurizer is invoked
till the current displacement ends or a pre-specified time limit is
reached. The final feature vector is fed to an end classifier such as
SVM [34]. Note that incremental feature computation overhead is
the primary impediment in realizing efficiency in these systems,

xt

ht-1

U
�

ht

W
tanh

f(zt)

ζ(1-zt)+�
=

(a) FastGRNN (cascaded) (b) EMI-FastGRNN (always on)

Figure 3: FastGRNN&EMI-FastGRNN (images from [10, 26])

hence techniques like replacing the heavy SVM classifier with the
much lighter Bonsai [24], or observing longer displacements to run
inference infrequently do not alleviate this problem.

3.2.3 Deep Classifier Architecture. In the interest of designing re-
source efficient solutions, in this work, we use purely time-domain
learning instead of all-domain feature engineering. While we pre-
serve the aforementioned classifier hierarchy in our solution, we
replace the simple “ensemble" with a principled 2-tier RNN ap-
proach. In the next sections, we present our proposed architecture
and discuss how our approaches to deep feature learning can be
used to successfully resolve the above issues.

4 2-TIER DEEP CLASSIFIER ARCHITECTURE
MSC-RNN is a multi-scale, cascaded architecture that uses EMI-
FastGRNN as the lower-tier clutter discriminator and FastGRNN as
the upper-tier source classifier. While EMI-FastGRNN efficiently
localizes the source signature in a clutter prone time-series ensuring
smaller sequential inputs along with early classification, FastGRNN
reduces the per-step computational overhead over much heavier
alternatives such as LSTM. We begin with the relevant background
for each of these components.

4.1 Candidate Classifiers
FastGRNN. FastRNN [26] provably stabilizes RNN training by
helping to avoid EVGP by using only two additional scalars over
the traditional RNN. FastGRNN is built over FastRNN and it ex-
tends the scalars of FastRNNs to vector gates while maximizing
the computation reuse. FastGRNN also ensures its parameter ma-
trices are low-rank, sparse and byte quantized to ensure very small
models and very fast computation. FastGRNN is shown to match
the accuracies of state-of-the-art RNNs (LSTM and GRU) across
various tasks like keyword spotting, activity recognition, sentiment
analysis, and language modeling while being up to 45x faster.

LetX = [x1, x2, . . . , xT ] be the input time-series, where xt ∈ RD .
The traditional RNN’s hidden vector ht ∈ RD̂ captures long-term
dependencies of the input sequence: ht = tanh(Wxt + Uht−1 + b).
Typically, learning U and W difficult due to the gradient instability.
FastGRNN (Figure 3(a)) uses a scalar controlled peephole connection
for every coordinate of ht :

ht = (ζ (1 − zt ) + ν ) ⊙ tanh(Wxt + Uht−1 + bh ) + zt ⊙ ht−1,

zt = σ (Wxt + Uht−1 + bz )

Here, 0 ≤ ζ ,ν ≤ 1 are trainable parameters, and ⊙ represents the
vector Hadamard product.
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EMI-RNN. Time-series signals when annotated are rarely precise
and often coarsely labeled due to various factors like human errors
and smaller time frames of activities themselves. EMI-RNN [10]
tackles the problem of signal localization using MIL, by splitting
the ith data window into instances {Zi,τ }τ=1, ...T−ω+1 of a fixed
width ω (Figure 3(b)). The algorithm alternates between training
the classifier and re-labeling the data based on the learned classifier
until convergence. A simple thresholding scheme is applied to
refine the instances: in each iteration, k consecutive instances are
found with maximum prediction sum for the class label. Only these
instances are included in the training set for the next iteration. Here,
k is a hyperparameter that intuitively represents the number of
instances expected to cover the source signature. In the end, EMI-
RNN produces precise signal signatures which are much smaller
than the raw input, thus reducing the computation and memory
overhead over the traditional sequential techniques. EMI-RNN also
ensures early detection of noise or keywords thereby removing the
need of going through the entire signal before making a decision.
When combined, EMI-FastGRNN provides very small models along
with very fast inference for time-series classification tasks. Codes
for FastGRNN [26] & EMI-RNN [10] are part of Microsoft Research
India’s EdgeML repository [11].

4.2 MSC-RNN Design
While EMI-RNN is by itself equipped to handle multi-class classifica-
tion efficiently, we find its accuracy and non-dominant source recall
to be sub-optimal for the radar time-series, especially at smaller
hidden dimensions and shorter window lengths. FastGRNN, on the
other hand, is a relatively heavier solution to be used as a continu-
ously running 3-class discriminator. To redress this trade-off, we
make the following observations:

(i) clutter, which yields self-canceling phase, can be rejected at
a relatively shorter time-scale,

(ii) disambiguating source types from their complex returns is
a harder problem requiring a potentially longer window of
observation, and

(iii) the common case in a realistic deployment constitutes clutter;
legitimate displacements are relatively few.

MSC-RNN, therefore, handles the two sub-problems at differ-
ent time-scales of featurization (see Figure 4): the lower tier, an
EMI-FastGRNN, discriminates sources from clutter at the level of
short instances, while the upper one, a windowed FastGRNN, dis-
criminates source types at the level of longer windows. Further, the
upper tier is invoked only when a source is discriminated by the
lower tier and operates on the instance-level embeddings generated
by the latter.

4.2.1 Joint Training and Inference. The training of the lower tier
inherits from that of EMI-training. We recap its training algorithm
[10], which occurs in two phases, the MI phase and the EMI phase.
In theMI phase, where the source boundaries are refined in a clutter-
prone window, the following objective function is optimized:

min
fl ,si

1
n

∑
i,τ

1τ ∈[si ,si+k ]ℓ(fl (Zi,τ ),yi )

Here, ℓ represents the loss function of FastGRNN, and the clas-
sifier fl is based on the final time-step in an instance. In the EMI
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Figure 4: MSC-RNN architecture – the lower EMI-FastGRNN
runs continuously, while the higher FastGRNN is invoked
only for legitimate displacements

phase, which incorporates the early stopping, the loss LEMI is ob-
tained by replacing the previous loss function with the sum of the

classifier loss at every step: min
∑
i

T∑
t=1
ℓ(wT oi,t ), where w is the

fully connected layer and oi,t the output at step t . The overall train-
ing proceeds in several rounds, where the switch to the EMI loss
function is typically made halfway in.

For training the upper tier, in keeping with the divide-and-
conquer paradigm of MSC-RNN, the Tier 2 FastGRNN cell should
only learn to separate the source types, while ignoring instances
of training data that are clutter. Therefore, we devise a conditional
training strategy that captures the cascading behavior. To achieve
this, the standard cross-entropy loss function of the upper tier is
modified as:

min
fu

1
n

∑
i
1yi,−1ℓ(fu (E({Z

tr
i,τ })),yi )

where fu represents the upper classifier, and E : R(T−ω+1)×ω×F →
R(T−ω+1)×Hl represents the instance-level embedding vector from
EMI-RNN with a hidden dimension of Hl (here, F represents the
feature dimension for the radar time-series). Intuitively, this means
that the upper loss is unaffected by clutter points, and thus the tiers
can be kept separate.

The training algorithm for MSC-RNN is outlined in Algorithm 1.
The two tiers are first separately initialized using their respective
loss functions, and in the final phase, both are jointly trained to min-
imize the sum of their losses. Inference is simple: the instance-level
EMI-RNN stops early with a decision of “Source” when a probabil-
ity threshold p̂ is crossed; ≥ k consecutive positives constitute a
discrimination for which the cascade is activated.

5 COMPARATIVE & TIER-WISE EVALUATION
5.1 Datasets
Table 3(a) lists the radar source and clutter datasets collected in
various indoor and outdoor environments, which are used in this
work. Some of these locations are documented in Figure 5; small or
crammed indoor spaces such as office cubicles have been avoided
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(a) Public park (b) Indoor amphitheater (c) Parking garage bldg. (d) Building foyer

Figure 5: Some locations where source and clutter data was collected for experiments

Algorithm 1:MSC-RNN training algorithm

Input: Multi-instance training data
{{Z tr

i,τ }τ=1, ...T−ω+1,y
tr
i }i=1, ...n , the number of rounds nr , k

Training:
Freeze FastGRNN, unfreeze EMI-FastGRNN
repeat

Train EMI-FastGRNN({{Z tr
i,τ },1ytri ,−1

})
until convergence
Freeze EMI-FastGRNN, unfreeze FastGRNN
repeat

Train FastGRNN({E({Z tr
i,τ },y

tr
i )}), minimizing loss

1
n
∑
i
1yi,−1ℓ(fu (E({Z

tr
i,τ })),yi )

until convergence
Unfreeze both EMI-FastGRNN and FastGRNN
for r ∈ nr do

if r < nr
2 then

Llower ←MI-loss
else
Llower ← EMI-loss

end if
repeat
TrainMSC-RNN({{Z tr

i,τ },1ytri ,−1
}) minimizing loss

Llower +
1
n
∑
i
1yi,−1ℓ(fu (E({Z

tr
i,τ })),yi )

until convergence
end for

to prevent the radar returns from being adversely affected by multi-
path effects and because they are not central to the smart city
scenarios. A partial distribution of displacement durations is pro-
vided in Figure 6(a). Each data collect has associated with it the
corresponding ground truth, recorded with motion-activated trail
cameras or cellphone video cameras, with which the radar data
was correlated offline to “cut” and label the source displacement
snippets appropriately1. The datasets have been balanced in the
number of human and non-human displacement points where pos-
sible, and windowed into snippets of 1, 1.5, and 2 seconds which
correspond to 256, 384, and 512 I-Q sample pairs respectively. We
note that due to the duration of collections and differences in av-
erage displacement lengths, etc., humans are underrepresented in
these datasets compared to the other labels. Table 3(b) shows the

1The radar dataset, which we have open-sourced, does not include individually iden-
tifiable information of living individuals and is thus not considered research with
human subjects per 45 CFR §46.102(e)(1)(ii).

number of training, validation, and test points for each of these
window lengths on a roughly 3:1:1 split. Currently, only the cattle
set has multiple concurrent targets; efforts to expand our datasets
with target as well as radar type variations are ongoing.

Table 3: Radar evaluation datasets

(a) Source displacement counts and clutter durations

Env. Data Type
Type Count

Building foyer Human, Gym ball 52, 51
Indoor amphitheater Human, Gym ball 49, 41
Parking garage bldg. Human 268
Parking lot Human, Car 50, 41
Indoor soccer field Human, Gym ball 90, 82
Large classroom Human, Gym ball 48, 50
Cornfield Human, Dog 117, 85
Cattle shed Cow 319
Playground Clutter 45 mins
Parking garage bldg. Clutter 45 mins
Public park Clutter 45 mins
Garden Clutter 45 mins
Lawn Clutter 20 mins

(b) Windowed data from (a) showing number of training, valida-
tion, and test points

Window Len. (s) #Windows
Training Validation Testing

1 17055 5685 5685
1.5 11217 3739 3739
2 8318 2773 2773

5.2 Evaluation Methodology
Our proposed architecture is compared with existing shallow radar
solutions that use feature handcrafting in the amplitude, phase
and spectral domains, as well as with other MIL RNNs. In all cases
involving RNNs, the radar data is represented purely in the time-
domain. The models chosen for this evaluation are:

(a) 2-tier SVMwith phase unwrapped displacement detec-
tion. Phase unwrapping [12] is a widely used technique in
radar displacement detection due to its computational effi-
ciency. The idea is to construct the relative trajectory of a
source by accumulating differences in successive phase mea-
surements, whereby clutter can be filtered out. We contrast
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Figure 6: Source detected duration CDF for the data in Ta-
ble 3(a) and how the hyperparameter k in 2-class EMI affects
their detection (1-second windows)

MSC-RNN with a two-tier solution proposed in [34], which
uses a robust variant of phase unwrapping with adaptive
filtering of clutter samples.

(b) 3-class SVM. A clutter vs human vs non-human SVM solu-
tion that uses feature handcrafting.

(c) EMI-FastGRNN. An EMI version of FastGRNN (Section 4).
(d) EMI-LSTM. An EMI version of the LSTM. Note that this is

a much heavier architecture than the former, and should not
be regarded as suitable for a microcontroller device.

Since shallow featurization incurs high incremental overhead,
real-time micro-power radar solutions typically only compute the
highest information features. For the SVM solutions, training is per-
formedwith the best 15 features selected by theminimal-redundancy-
maximal-relevance (mRMR) criterion [32].

For the MIL experiments, the windowed data from Table 3(b)
is further reshaped into instances of length 48×2 samples with
a fixed stride of 16×2, where 2 refers to the number of features
(I and Q components of radar data). For example, for 1-second
windows, the shape of the training data for MIL experiments is
(17055, 14, 48, 2), and the shape of the corresponding instance-level
one-hot labels is (17055, 14, 3). In the interest of fairness and also to
avoid a combinatorial exploration of architectural parameters, we
present results at fixed hidden sizes of 16, 32, and 64. For MSC-RNN,
the lower tier’s output (embedding) dimension and upper tier’s
hidden dimension are kept equal; however, in practice, it is easy
to parameterize them differently since the former only affects the
latter’s input dimension.

5.2.1 Hyperparameters. Table 4 lists the hyperparameter combina-
tions used in our experiments. For the upper-tier source discrim-
ination comparison in Section 5.3.3, FastGRNN is also allowed to
select its optimum input length from 16, 32, and 64 samples.

The selection of the EMI hyperparameter k merits some discus-
sion, in that it controls the extent of “strictness" we assign to the
definition of displacement. A higher k makes it more difficult for
a current window to be classified as a source unless the feature of
interest is genuinely compelling. Expectedly, this gives a trade-off
between clutter and source recall as is illustrated in Figure 6(b). As
explained in Section 1, controlling for false positives is extremely
important in radar sensing contexts such as intrusion detection.
Hence, we empirically set k to 10, the smallest value that gives a
clutter recall of 0.999 or higher in our windowed datasets.

Table 4: Training hyperparameters used

Model Hyperparameter Values

EMI/FastGRNN

Batch size 64, 128
Hidden size 16, 32, 64
Gate non-linearity sigmoid, tanh
Update non-linearity sigmoid, tanh
k 10
Keep prob. (EMI-LSTM) 0.5, 0.75, 1.0
Optimizer Adam

SVM c
1e-3, 1e-2, 0.1, 1, 10,
100, 1e3, 1e5, 1e6

γ
1e-3, 1e-2, 5e-2, 0.1,
0.5, 1, 5, 10

5.3 Results
5.3.1 Comparative Classifier Performance. We compare the infer-
ence accuracy and recalls of MSC-RNN, with the RNN and shallow
solutions outlined in Section 5.2.

Recall that we have purposefully devised a purely time-domain
solution for source discrimination for efficiency reasons, since one
of the main components of featurization overhead is that of FFT
computations. Figure 7 compares MSC-RNN with engineered fea-
tures in the amplitude, time, and spectral domains that are opti-
mized for micro-power radar classification. For the two-tier SVM,
the source recalls for increasing window sizes are inferred from
Figure 8 (discussed in Section 5.3.3). We find that MSC-RNN sig-
nificantly outperforms the 2-tier SVM solution in terms of human
and non-human recalls, even with features learned from the raw
time-series. Similarly, for the 3-class case, our solution provides
much more stable noise robustness and is generally superior even
to the much heavier SVM solution.

Figure 9 contrasts our model with 3-class EMI-FastGRNN and
EMI-LSTM, for fixed hidden sizes of 16, 32, and 64 respectively.
It can be seen that MSC-RNN outperforms the monolithic EMI
algorithms on all three metrics of accuracy, non-human and human
recalls (with one exception for EMI-LSTM). Notably, cascading
significantly enhances the non-dominant class recall over the other
methods, especially for larger hidden sizes, and therefore offers
better resilience to the source type imbalance in radar datasets.

5.3.2 Runtime Efficiency Comparison - MSC-RNN vs. Feature Hand-
crafting. Table 5 lists the runtime duty cycle estimates of MSC-
RNN versus shallow SVM alternatives in two deployment contexts
with realistic clutter conditions, supported by usage statistics of
a popular biking trail in Columbus, OH [2]. While the 2-tier SVM
understandably has the lowest duty cycle due to a cheap lower
tier, it is not a competitive solution as established in Section 5.3.1.
The 3-class SVM, on the other hand, is dominated by the feature
computation overhead. While the 48×2 MSC-RNN formulation is
about 1.75× as efficient as using handcrafted features, it is possible
to reduce instance-level computations even further by using longer
input vectors and reducing the number of iterations. As an exam-
ple, an alternate formulation of MSC-RNN with a 16-dimensional
input vector at the instance level is 3× more efficient than feature
engineering.
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Len. (s)

Accuracy Clutter Recall
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(3-class) MSC-RNN SVM_15f

(3-class) MSC-RNN

1 0.851 0.944 0.758 0.999
1.5 0.934 0.954 0.996 0.999
2 0.959 0.972 0.999 1.000

(c) Accuracy and Clutter Recall (3-class SVM and MSC-RNN)

Figure 7: Classification comparison of purely time-domain
FastGRNNwith two SVM solutions: (a) a 2-tier system using
a phase unwrapped clutter rejector as the lower tier, and (b)
a 3-class SVM. Both use 15 high information features hand-
crafted in the amplitude, time, and spectral domains

Table 5: Estimated featurization duty cycle comparison on
ARM Cortex-M3

Architecture Est. Duty Cycle (Cortex-M3)
97% Clutter 98% Clutter

MSC-RNN (Inp. dim.=2) 21.00% 20.00%
MSC-RNN (Inp. dim.=16) 10.87% 10.70%
2-Tier SVM 2.05% 1.70%
3-Class SVM 35.00% 35.00%

5.3.3 Tier-wise Evaluation. We next compare the lower-tier and
upper-tier classifiers individually to their shallow counterparts in
the 2-tier SVM solution.
Tier 1 Classifier. Figure 8 compares the probabilities of missed de-
tects versus displacement durations for the 3-outof-4 displacement
detector and the EMI component of our solution (for a principled
approach to choosing parameters for the former, refer to Appendix
A) at hidden sizes of 16, 32, and 64. It can be seen that, for the
shortest cut length of 1.5 s in the dataset, the detection probabil-
ity is improved by up to 1.5× (1.6×) over the 3-outof-4 detector
with false alarm rates of 1/week and 1/month respectively even
when the false alarm rate (1−test clutter recall) of EMI is 0, which
translates to a false alarm rate of <1 per year. Further, the EMI
detector converges to 0 false detects with displacements ≥2.5 s,
and is therefore able to reliably detect walks 2.6× shorter than the
previous solution. Therefore, it is possible to restrict false positives
much below 1/month while significantly improving detectability
over the M-outof-N solution. Since the clutter and source datasets
span various backgrounds (Figure 5), MSC-RNN offers superior
cross-environmental robustness.
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Figure 8: Comparison of miss probabilities versus displace-
ment durations of Tier 1 classifier vs. 3-outof-4 phase un-
wrapped displacement detector

Tier 2 Classifier. We now show that the gains of MSC-RNN over
the 2-tier SVM solution are not, in fact, contingent on the quality of
the underlying displacement detector for the latter. For this experi-
ment, we train a 2-class FastGRNN on embeddings derived from
the Tier 1 EMI-FastGRNN. Table 6 compares its performance with
the upper-tier SVM from the latter when trained with the best 15
cross-domain features obtained from the raw radar samples. It can
be seen that the purely time-domain FastGRNN still generally out-
performs the 2-class SVM on all three metrics of accuracy, human
recall, and non-human recall. Thus, it is possible to replace feature
engineering with deep feature learning and enjoy the dual benefits
of improved sensing and runtime efficiency for this class of radar
applications.

Table 6: Independent of the Tier 1 classifier, the Tier 2
source-type classifier outperforms the SVM

Win.
Len.
(s)

Accuracy Human
Recall

Non-human
Recall

SVM
_15f

Fast-
GRNN

SVM
_15f

Fast-
GRNN

SVM
_15f

Fast-
GRNN

1 0.93 0.93 0.90 0.90 0.93 0.94
1.5 0.93 0.93 0.90 0.93 0.95 0.95
2 0.93 0.96 0.86 0.96 0.96 0.97

6 LOW-POWER IMPLEMENTATION
The radar sensor described in Figure 1(a) uses an ARM Cortex-M3
microcontroller with 96 KB of RAM and 4 MB of flash storage. It
runs eMote [37], a low-jitter near real-time operating system with
a small footprint. We emphasize that energy efficient compute, not
working memory or storage, is the bigger concern for efficient
real-time operation. Hence, we take several measures to efficiently
implement the multi-scale RNN to run at a low duty cycle on the de-
vice. These include low-rank representation of hidden states, Q15
quantization, and piecewise-linear approximations of non-linear
functions. The latter in particular ensures that all the computations
can be performed with integer arithmetic when the weights and
inputs are quantized. For example, tanh(x) can be approximated as:
quantTanh(x) = max(min(x , 1),−1), and siдmoid(x) can be approx-
imated as: quantSiдm(x) = max(min( x+12 , 1), 0). The underlying
linear algebraic operations are implemented using the CMSIS-DSP
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Figure 9: Sensing performance comparison of MSC-RNN with EMI-FastGRNN and EMI-LSTM

library [1]. While advanced ARM processors such as Cortex-M4
offer floating point support, it should be noted that, for efficiency
reasons, using sparse, low rank matrices and quantization tech-
niques are beneficial in general.

7 CONCLUSION AND FUTUREWORK
In this work, we introduce multi-scale, cascaded RNNs for radar
sensing, and show how leveraging the ontological decomposition
of a canonical classification problem into clutter vs. source classifi-
cation, followed by source type discrimination on an on-demand
basis can improve both sensing quality as well as runtime efficiency
over alternative systems. Learning discriminators at the time-scales
relevant to their respective tasks, and jointly training the discrimi-
nators while being cognizant of the cascading behavior between
them yields the desired improvement.

The extension of MSC-RNNs to more complicated sensing con-
texts is a topic of future work. Of interest are regression-based radar
“counting” problems such as occupancy estimation or active trans-
portation monitoring, where the competitiveness of MSC-RNN to

architectures such as TCNs [4] could be insightful. We also believe
that MSC-RNN could also apply to alternative sensing for smart
cities and built environments where the sources have intrinsic on-
tological hierarchies, such as in urban sound classification [5].
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A PARAMETER SELECTION FOR M-OUTOF-N
DISPLACEMENT DETECTOR

0 0.1 0.6 0.70.2 0.3 0.4 0.5 
Distance (meters) in 1s Noise Windows

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g
(F

a
ls

e
 A

la
rm

 P
ro

b
a
b
ili

ty
)

Playground

Parking garage bldg.

Public park

Garden

Lawn

1 FA/week

1 FA/month

(a) Clutter threshold selection for
1 FA/week and 1 FA/month

0 0.1 0.2 0.3 0.4 0.5 0.6

Distance (meters) in 1s Source Windows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
C

D
F

1 FA/week

(single

window)

1 FA/month

(3-outof-4

windows)
1 FA/month

(single

window)
1 FA/week

(3-outof-4

windows)

(b) Relaxation of per-window
threshold through aggregation

Figure 10: Shallow displacement detector parameter selec-
tion using the datasets from Table 3(a): here, M=3 and N=4

We discuss the parameter selection process for the unwrapped-
phase displacement detector [34] referenced in Figures 7 and 8 in a
principled manner. Figure 10(a) shows the cumulative distribution
of unwrapped phase changes of environmental clutter, translated
into real distance units, in various environments for 1-second inte-
gration windows from the clutter datasets in Table 3(a). The data is
extrapolated using linear fitting on a logarithmic scale to estimate
the required phase thresholds to satisfy false alarm rates of 1 per
week and 1 per month respectively (derived using Bernoulli prob-
abilities). We see that the unwrapped thresholds for 1 false alarm
per week and month correspond to 0.3 and 0.32 m respectively. In
this analysis, we fix the IQ rejection parameter at 0.9, which gives
us the most lenient thresholds.

Figure 10(b) illustrates the CCDFs of phase displacements for all
source types (humans, gym balls, dogs, cattle, and slow-moving ve-
hicles) in our dataset combined, calculated over 1-second windows.
Setting thresholds based on the previous analysis, the probability
of false negatives per window is still significant. In practice, the
algorithm improves detection by basing its decision on 3-outof-4
sliding windows, where detectability improves since the threshold
per window is now 3

4× the original threshold. For 1 false alarm
per week (month), the displacement threshold for the 3-outof-4
detector reduces to 0.22 m (0.24 m) per window, with an improved
detection probability of 0.59 (0.62).

http://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
http://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
https://www.columbus.gov/recreationandparks/trails/Future-Trails-(Updated)/
https://www.columbus.gov/recreationandparks/trails/Future-Trails-(Updated)/
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73
https://github.com/Microsoft/EdgeML
https://github.com/dhruboroy29/MSCRNN
https://doi.org/10.5281/zenodo.3451407
https://doi.org/10.5281/zenodo.3451407
https://goo.gl/C4CCv4
https://medium.com/array-of-things/five-years-100-nodes-and-more-to-come-d3802653db9f
https://medium.com/array-of-things/five-years-100-nodes-and-more-to-come-d3802653db9f
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