
FLUID: A Unified Evaluation Framework for Flexible Sequential Data

Matthew Wallingford†, Aditya Kusupati* †, Keivan Alizadeh-Vahid* †,
Aaron Walsman†, Aniruddha Kembhavi†‡ and Ali Farhadi†

†University of Washington, ‡Allen Institute for Artificial Intelligence
https://raivn.cs.washington.edu/projects/FLUID/

Abstract

Modern ML methods excel when training data is IID,
large-scale, and well labeled. Learning in less ideal condi-
tions remains an open challenge. The sub-fields of few-shot,
continual, transfer, and representation learning have made
substantial strides in learning under adverse conditions;
each affording distinct advantages through methods and in-
sights. These methods address different challenges such as
data arriving sequentially or scarce training examples, how-
ever often the difficult conditions an ML system will face
over its lifetime cannot be anticipated prior to deployment.
Therefore, general ML systems which can handle the many
challenges of learning in practical settings are needed. To
foster research towards the goal of general ML methods,
we introduce a new unified evaluation framework – FLUID
(Flexible Sequential Data). FLUID integrates the objectives
of few-shot, continual, transfer, and representation learning
while enabling comparison and integration of techniques
across these subfields. In FLUID, a learner faces a stream of
data and must make sequential predictions while choosing
how to update itself, adapt quickly to novel classes, and deal
with changing data distributions; while accounting for the
total amount of compute. We conduct experiments on a broad
set of methods which shed new insight on the advantages and
limitations of current solutions and indicate new research
problems to solve. As a starting point towards more general
methods, we present two new baselines which outperform
other evaluated methods on FLUID.

1. Introduction
Modern ML methods have demonstrated remarkable ca-

pabilities, particularly in settings with large-scale labeled
training data drawn IID. However, in practice the learning
conditions are often not so ideal. Consider a general recog-
nition system, a key component in many computer vision
applications. One would expect such a system to learn from
a changing data distribution, recognize classes with few and
many examples, revise the set of known classes as new ones
are seen, and update itself over time using new data.

*Equal contribution

Various subfields such as few-shot, continual, transfer,
and representation learning have made substantial progress
on the challenges associated with learning in non-ideal set-
tings. The methods from these fields excel when the deploy-
ment conditions can be anticipated and align with specific
scenarios. For example, few-shot methods perform well
when the number of new classes and examples per class are
known in advance. Similarly, continual learning techniques
improve performance when new data arrives in fixed-size
batches at predictable intervals. However, in many appli-
cations the exact conditions cannot be known a priori and
are likely to change over time. Data may come at irregu-
lar intervals, the volume of supervision for each class may
change, or new classes might be encountered. This calls
for general methods that can handle a plethora of scenarios
during deployment.

To make progress towards such general methods, new
evaluations which reflect the key aspects of learning in prac-
tical settings are essential. But, what are these aspects?
We posit the following as some of the necessary elements:
(1) Sequential Data - In many application domains the data
streams in. ML methods must be capable of learning from
new data and changing distributions. (2) X-shot - Data of-
ten has a different number of examples for each class (few
for some and many for others). Current evaluations assume
prior knowledge of which data regime (few-shot, many-shot,
etc.) new classes will be from, but often this cannot be
known in advance. (3) Flexible Training Phases – Practical
scenarios rarely delineate when and how a system should
train. ML systems should be capable of making decisions
such as when to train based on incoming data, which data to
train with, and whether to update all parameters or just the
classifier. (4) Compute Aware – Real-world systems often
have computational constraints not only for inference but
also for training. ML systems should account for the total
compute used throughout their lifetime. (5) Open-world -
As new data is encountered the set of known classes may
change over time. Learning in practical settings often entails
recognizing known classes while detecting when data comes
from new classes.

With these elements in consideration we introduce FLUID
(Flexible sequential data), a unified evaluation framework.

1

https://raivn.cs.washington.edu/projects/FLUID/

FLUID

Standard Supervised Learning Task-Style Continual Learning Standard Few-Shot Learning

Training

Evaluation

Data Stream

a single
training
phase

train on many
example

distributions

train and evaluate on new
unseen distributions

train then evaluate on
sequential distributions

a single evaluation phase
on the same distribution

evaluation methodology
supports arbitrary changes

in the data distribution

learner must decide when to train and
on which examples in order to maximize

performance while minimizing MACS
model is evaluated
on each incoming

data point

Matching colors
indicate matching
distributions

Figure 1. Comparison of supervised (top-left), continual (top-middle), and few-shot learning (top-right) with FLUID (bottom). The learner
(grey box) accumulates data (dotted path), trains on given data (filled nodes), then is evaluated (empty nodes). The size of the node indicates
the scale of the training or evaluation. Each color represents a different set of classes.

FLUID integrates the objectives of few-shot, continual, trans-
fer, and representation learning into a simple and realizable
formulation along with a benchmarkable implementation. In
FLUID, a learner is deployed on a stream of data from an
unknown distribution and must classify incoming samples
one at a time while deciding when and how to update based
on newly received data.

We conduct extensive experiments with FLUID on a broad
set of methods across subfields. The experimental results
quantitatively demonstrate the current limitations and capa-
bilities of various ML approaches. For example, we find
that canonical few-shot methods do not scale well to sce-
narios with more classes and varying number of examples.
Similarly, we observe that continual learning methods often
hinder performance when large-scale pretraining is readily
available. Finally, we briefly explore the emergent problem
of finding update strategies for deciding when and how to
train efficient on incoming data. The framework, data and
models will be open-sourced.

We make the following contributions:
1. A new evaluation framework, FLUID, which unifies

the objectives of few-shot, continual, transfer, and self-
supervised learning into a simple evaluation that enables
comparison and integration of methods across related
subfields and presents new research challenges.

2. New insights from experiments with FLUID like higher
capacity networks generalize better to novel classes, rep-
resentative self-supervised methods behave differently

than standard pretraining on few-shot classes, and large-
scale pretraining mitigates catastrophic forgetting.

3. Two simple baselines, Exemplar Tuning & MDT, which
outperform evaluated methods in FLUID while matching
performance in supervised and few-shot settings.

2. FLUID Related Work
We discuss the key aspects of FLUID in the context of

other works and evaluations. Logistical details of FLUID
are provided in section 3. Lastly, We outline the existing
frameworks along with the supported properties in Table 1

Sequential Data and Continual Learning New data is
an inevitable consequence of our dynamic world and learning
over time is a long-standing challenge [53]. In recent years,
continual learning (CL) has made notable progress on the
problem of learning in a sequential fashion [1, 2, 25, 33, 46,
47]. Several setups have been proposed in order to evaluate
systems’ abilities to learn continuously and primarily focus
on catastrophic forgetting, a phenomenon where models
drastically lose accuracy on old tasks when trained on new
tasks. The typical CL setup sequentially presents data from
each task then evaluates on current and previous tasks [25,
33, 46]. Recent variants have proposed a task-free setting
where the data distribution changes without the model’s
knowledge [18, 19, 47, 52, 63].

There are two assumptions in CL setups which we remove
in FLUID. The first assumption is that data will be received
in large batches with ample data for every class in the task.

2

Table 1. We categorize existing evaluations frameworks aimed at learning in practical settings. 3: presence; 7: absence & –: not applicable.

Framework
Property

Open-world Sequential
Variable

Batch-size Few-shot Many-shot
Compute

Aware
Memory

Constrained
Flexible
Training Non-IID

Representation Learning 7 7 – 7 3 – – – 3
Transfer Learning 7 7 – 7 3 – – – 3
Task-based Continual Learning 7 3 7 7 3 – 3 7 3
Task-free Continual Learning 7 3 7 7 3 – 3 7 3
Few-shot Learning 7 7 – 3 7 – – – 3
Generalized Few-shot Learning 7 7 – 3 3 – – – 3
Streaming Perception 7 3 – – – 3 – – 7
Open Long-Tailed Recognition 3 7 – 3 3 – – – 7
Data Stream Classification – 3 3 – 3 – 3 – 3
Test Time Training 7 3 3 – – – – 7 3
FLUID (Ours) 3 3 3 3 3 3 – 3 3

This circumvents a fundamental challenge of sequential data
which is learning new classes from only a few examples.
Consider the common scenario in which a learner encounters
an instance from a novel class. The system must determine
that it belongs to a new class with no previous examples
(zero-shot learning and out-of-distribution detection). The
next time an instance from the category appears, the system
must be capable of one-shot learning, and so forth. In other
words, few-shot learning is a natural consequence of learning
from sequential data. Second assumption is that the training
and testing phases will be delineated to the system. Deciding
when to train and which data to train on is vital and an
intrinsic challenge of learning continuously.

Some continual learning formulations include a memory
cache to store images, typically between 0 - 1000, from
previous tasks. We argue that setting a specific memory con-
straint, particularly this small, is too constraining. Methods
should account for memory, but the FLUID framework does
not explicitly restrict memory during streaming. Note that
for a fair comparison to CL methods we use no memory
caching for the Nearest Class Mean (NCM) baseline and
complete caching for CL methods.

Lastly, data stream classification [4, 14, 50, 60] has
worked on the problem of learning from sequential data.
This line of work primarily focuses on traditional classifica-
tion and not image recognition. At a high level FLUID has
similar goal as data stream classification. FLUID differs in
its implementation which importantly integrates the preexist-
ing fields of few-shot, transfer, representation, and continual
learning and provides a concrete benchmark for sequential
image recognition.

Few-shot and X-shot Learning Learning from few ex-
amples for some classes is an inherent aspect of the real-
world. Learning from large, uniform datasets [34, 48] has
been the primary focus of supervised learning while few-shot
learning has gained traction as a subfield [17, 38, 45, 51].

While few-shot learning is a step towards more generally
applicable ML methods, the framework has assumptions that
are unlikely to hold in practical settings. The experimental

setup for few-shot is typically the n-shot k-way evaluation.
Models are trained on base classes during meta-training and
then tested on novel classes during meta-testing. The n-shot
k-way experimental setup is limited in two respects. n-shot
k-way assumes that a model will always be given exactly
n examples for k classes at test time which is unrealistic.
Second, most works only evaluate 5-way scenarios with 1, 5,
and 10 shots. Realistic settings often have a mix of classes
from both the high and low data regime. Expecting all classes
to have less than 10 samples is not a reasonable assumption.
Recently, general variants of few-shot learning have been
proposed [6, 11] and are still far from being practical.

FLUID naturally integrates the few-shot problem into its
framework by sequentially presenting data from a long tail
distribution and evaluates systems across a spectrum of shots
and ways. Our experimental results on representative few-
shot methods indicate that they are overly tuned to the spe-
cific conditions of the few-shot evaluation which validates
the need for a more general framework such as FLUID.

Flexible Training Phases Current experimental setups
dictate when models will be trained and tested. Ideally, an
ML system should be capable of knowing when to train
itself, what data to train on, and what to optimize for [9]. By
removing the assumption that training and testing phases are
fixed and known in advance, FLUID provides a benchmark
for tackling the relatively unexplored problem of learning
when to train.

Compute Aware ML systems capable of adapting to
their environment over time must account for the computa-
tional costs of their learning strategies as well as of inference.
Prabhu et al. [40] showed that current CL frameworks do not
measure total compute and therefore a naive but compute-
hungry strategy can drastically outperform state of the art
methods. Previous works have primarily focused on efficient
inference [23, 28, 29, 35, 44] and some on training costs [12].
In FLUID we measure the total compute for both learning
and inference over the sequence.

Open-world Practical scenarios entail inferring in an
open world - where the classes and number of classes are

3

unknown to the learner. Few-shot, continual, and traditional
supervised learning setups assume that test samples can only
be from training classes. Previous works explored static
open-world recognition [3, 26, 36, 43, 57] and the related
problem of out-of-distribution detection [22, 32, 37]. FLUID
presents a natural integration of sequential and open-world
learning where the learner must identify new classes and
update its known set of classes throughout the stream.

3. FLUID Evaluation Details

FLUID evaluation is designed to be simple and general
while integrating the key aspects outlined in section 2.

Formulation Let learning system S be composed of
a model, fθ : x 7→ y, and update strategy, U : fθ ×
T⋃
t=1

(xt, yt) 7→ fθ′ , where
T⋃
t=1

(xt, yt) is the training data

collected up to time T . Model, fθ, may be initialized using
pretraining data D = {xi, yi}ni=1.

At each new time step, t+ 1, the model is given a sam-
ple, xt, and provides a class label, fθ(xt+1) ∈ {1...K + 1},
for K known classes. In other words, the sample may be-
long to one of K previously seen classes, or a new class.
The model output is evaluated with respect to the true la-
bel, 1{fθ(xt+1) = yt+1}, and (xt+1, yt+1) is added to the
training set. If yt+1 is from a new class, the set of known
classes is updated accordingly. Next the model, fθ, may be
updated according to U using all previously observed data.
This process is repeated for some total number of time steps.

Systems are evaluated on a suite of metrics including the
overall and mean class accuracy throughout the stream along
with the total compute required for updates and inference.
Lastly, Algorithm 1 in Appendix A provides a psuedo code
for the implementation of the FLUID framework.

Data In this paper, we evaluate methods with FLUID
using a subset of ImageNet-22K [10]. Traditionally, few-
shot learning used datasets like Omniglot [30] & MiniIma-
genet [58] and continual learning focused on MNIST [31]

Table 2. The evaluation metrics used in the FLUID framework to
capture the performance and capabilities of various algorithms.

Metric Description
Overall Accuracy Accuracy over the sequence.

Mean Per-Class
Accuracy Accuracy averaged over all classes in the sequence.

Total Compute MAC operations for all compute over the sequence.

Unseen Class
Detection AUROC for the detection of OOD samples.

Cross-Sectional
Accuracies

Classes in the sequence belong fall into 4 subcategories:
1) Pretraining-Head: > 50 samples & in pretraining.
2) Pretraining-Tail: ≤ 50 samples & in pretraining.
3) Novel-Head: > 50 samples & not in pretraining.
4) Novel-Tail: ≤ 50 samples & not in pretraining.

& CIFAR [27]. Some recent continual learning works have
used Split-ImageNet [61]. The aforementioned datasets are
mostly small-scale and have very few classes. We evalu-
ate on the ImageNet-22K dataset to present new challenges
to existing models. Recently, the INaturalist [56, 62] and
LVIS [16] datasets have advocated for heavy-tailed distri-
butions. We follow suit and draw our sequences from a
heavy-tailed distribution.

The dataset consists of a pretraining dataset and 5 differ-
ent sequences of images for streaming (3 test and 2 validation
sequences). For pretraining we use the standard ImageNet-
1K [48]. This allows us to leverage existing models built by
the community as pre-trained checkpoints. Sequence images
come from ImageNet-22K after removing ImageNet-1K’s
images. Each test sequence contains images from 1000 dif-
ferent classes, 750 of which do not appear in ImageNet-1K.
We refer to the overlapping 250 classes as Pretrain classes
and the remaining 750 as Novel classes. Each sequence is
constructed by randomly sampling images from a heavy-
tailed distribution of these 1000 classes. Each sequence
contains∼ 90000 samples, where head classes contain > 50
and tail classes contain ≤ 50 samples. The sequence al-
lows us to study how methods perform on combinations of
pretrain vs novel, and head vs tail classes. In Table 3, we
show results obtained for sequence 5, and the Appendix I
shows results across all test sequences. More comprehensive
statistics on the data and sequences are in Appendix B.

Pretraining Supervised pretraining [21] on large anno-
tated datasets like ImageNet facilitates the transfer of learnt
representations to help data-scarce downstream tasks. Unsu-
pervised learning methods like autoencoders [55] and more
recent self-supervision methods [15, 24, 41] like Momentum
Contrast (MoCo) [20] and SimCLR [7] have begun to pro-
duce representations as rich as that of supervised learning
and achieve similar accuracy on various downstream tasks.

Before the sequential phase, we pretrain our model on
ImageNet-1K. In our experiments, we compare how differ-
ent pretraining strategies (contrastive learning, meta-training,
& supervised training) generalize under more open and chal-
lenging conditions. We find new insights such as contrastive
representations perform significantly worse on few-shot
classes compared to supervised counterparts in the FLUID
evaluation and meta-training causes larger networks to lose
performance in a way that supervised training does not.

Evaluation metrics Table 2 defines the evaluation met-
rics in FLUID to gauge the performance of the algorithms.

4. Baselines and Methods
We summarize the baselines, other methods, and our pro-

posed baselines, Exemplar Tuning and MDT. Additional
details about the methods and implementation can be found
in Appendix D and Appendix E respectively.

Standard Training and Fine-Tuning We evaluate stan-

4

dard model training (update all parameters in the network)
and fine-tuning (update only the final linear classifier) with
offline batch training. We ablate over the number of layers
trained during fine-tuning in Appendix F.

Nearest Class Mean (NCM) Recently, multiple
works [54, 59] have found that Nearest Class Mean (NCM)
is comparable to state-of-the-art few-shot methods [38, 51].
NCM in the context of deep learning performs a 1-nearest
neighbor search in feature space with the centroid of each
class as a neighbor. We pretrain a neural network with a lin-
ear classifier using softmax cross-entropy loss, then freeze
the parameters to obtain features.

Few-shot Methods We evaluate four representative
methods: MAML [13], Prototypical Networks (PTN) [49],
Weight Imprinting [42] & Meta-Baseline [8].

PTN trains a deep feature embedding using 1-nearest
neighbor with class centroids and soft nearest neighbor loss.
Parameters are trained with meta-training and backprop.

MAML is a gradient-based approach which uses second-
order optimization to learn parameters that can be quickly
fine-tuned and adapt to a given task. We tailor MAML to
FLUID by pretraining the model according to the objective in
Appendix D and then fine-tune during the sequential phase.

Weight Imprinting initializes the weights of a cosine clas-
sifier as the class centroids, then fine-tunes with a learnable
temperature. For further analysis of Weight Imprinting and
comparison to Exemplar Tuning see Appendix L.

Meta-Baseline is the same as NCM in implementation
except that a phase of meta-training is done after regular
softmax cross-entropy pretraining.

Continual Learning (CL) Methods We evaluate Learn-
ing without Forgetting (LwF) [33] and Elastic Weight Con-
solidation (EWC) [25] to observe whether continual learning
techniques can improve performance in FLUID.

LwF leverages knowledge distillation [5] to retain ac-
curacy on previous training data without storing it. EWC
enables CL in a supervised learning context by penalizing
the total distance moved by the parameters from the opti-
mal model of previous tasks weighted by the correspond-
ing Fisher information. Unlike LwF, EWC requires stored
data, typically the validation set, from the previous tasks.
In FLUID, we use LwF and EWC to retain performance on
pretrain classes. For further details see Appendix E.

Out-of-Distribution (OOD) Methods We evaluate two
methods proposed by Hendrycks & Gimpel [22] (HG) and
OLTR [36] along with our proposed OOD baseline. The HG
baseline thresholds the maximum probability output of the
softmax classifier to determine whether a sample is OOD.

We propose the baseline, Minimum Distance Thresh-
olding (MDT), which utilizes the minimum distance from
the sample to all class representations, ci. In the case of
NCM the class representation is the class mean and for a
linear layer it is the ith column vector. For distance func-

tion d and a threshold t, a sample is out of distribution
if: I (mini d (ci,x) < t). Other metric learning techniques
have proposed using distance to detect out of distribution ex-
amples [32, 37]. MDT primarily differs from these works in
that it can be used with a standard classification network and
can be performed in a single forward pass with negligible
extra compute. MDT outperforms the other evaluated OOD
methods in FLUID.

Exemplar Tuning (ET) We present a new
method/baseline that leverages the inductive biases
of instance-based methods and parametric deep learning.
The traditional classification layer is effective when given
a large number of examples but performs poorly when
only a few examples are present. On the other hand, NCM
and other few-shot methods are accurate in the low data
regime but do not significantly improve when more data is
added. Exemplar Tuning (ET) synthesizes these methods
in order to initialize class representations accurately when
learning new classes and to have the capacity to improve
when presented with more data. We formulate each class
representation (classifier), Ci, and class probability as the
following:

Ci =
1

n

∑
x∈Di

f(x; θ)

‖f(x; θ)‖
+ri; p(y = i|x) = eCi·f(x;θ)∑

i6=j e
Cj ·f(x;θ)

(1)

where f(x; θ) is a parametrized neural network, ri is a learn-
able vector, n is the number of class examples, and Di are
all examples in class i. Note that Ci is comparable in form
to the i-th column vector in a linear classification layer.

In this formulation, the class centroid (the first term of Ci
in Eq 1) provides an accurate initialization from which the
residual term ri can continue to learn. Thus ET is accurate
for classes with few examples (where deep parametric mod-
els are inaccurate) and continues to improve for classes with
more examples (where few-shot methods are lacking). In our
experiments, we update the centroid after each sample with
little additional compute and batch train the residual vector
with cross-entropy loss according to the same schedule as
fine-tuning (see Appendix E for implementation details).

Note that we compare ET to initializing a cosine clas-
sifier with class centroids and fine-tuning (Weight Imprint-
ing). We find that Exemplar Tuning outperforms Weight
Imprinting and affords two significant advantages besides
better accuracy. 1) ET has two frequencies of updates (fast
instance-based and slow gradient-based) which allows the
method to quickly adapt to distribution shifts while pro-
viding the capacity to improve over a long time horizon.
2) ET automatically balances between few-shot & many-
shot performance, unlike Weight Imprinting which requires
apriori knowledge of when to switch from centroid-based
initialization to fine-tuning.

5

Table 3. Performance of the suite of methods (outlined in Section 4) across accuracy and compute metrics on sequence 5. We present several
variants of accuracy - Overall, Mean-per-class as well as accuracy bucketed into 4 categories: Novel-Head, Novel-Tail, Pretrain-Head and
Pretrain-Tail (Pretrain refers to classes present in the ImageNet-1K dataset). Sup. refers to Supervised and MoCo refers to He et al. [20].
The best technique on every metric is in bold. Some methods could leverage caching of representations for efficiency, so, both GMACs are
reported. GMACs do not include pretraining compute costs. See Table 7 in Appendix H for results with ResNet50 backbone.

Method
Pretrain
Strategy

Novel -
Head (>50)

Pretrain -
Head (>50)

Novel -
Tail (<50)

Pretrain -
Tail (<50)

Mean
Per-Class Overall GMACs↓

(×106)

Backbone - Conv-4

(a) Prototypical Networks Meta 11.63 22.03 6.90 13.26 11.13 15.98 0.06
(b) MAML Meta 2.86 2.02 0.15 0.10 1.10 3.64 0.06 / 2.20

Backbone - ResNet18

(c) Prototypical Networks Meta 8.64 16.98 6.79 12.74 9.50 11.14 0.15
(d) Meta-Baseline Sup./Meta 40.47 67.03 27.53 53.87 40.23 47.62 0.16 / 5.73
(e) Weight Imprinting Sup. 40.32 67.46 15.35 34.18 32.69 48.51 0.16 / 5.73
(f) LwF Sup. 30.07 67.50 7.23 56.96 31.02 48.76 22.58 / 45.16
(g) EWC Sup. 39.03 70.84 16.59 47.18 34.89 50.39 12.29
(h) OLTR Sup. 40.83 40.00 17.27 13.85 27.77 45.06 0.16 / 6.39
(i) Fine-tune Sup. 43.41 77.29 23.56 58.77 41.54 53.80 0.16 / 5.73
(j) Standard Training Sup. 38.51 68.14 16.90 43.25 33.99 49.46 11.29
(k) NCM Sup. 42.35 72.69 31.72 56.17 43.44 48.62 0.15
(l) Exemplar Tuning (Ours) Sup. 48.85 75.70 27.93 45.73 43.61 58.16 0.16 / 5.73

(m) Weight Imprinting MoCo 16.77 26.98 6.19 8.69 12.60 22.90 0.16 / 5.73
(n) OLTR MoCo 34.60 33.74 13.38 9.38 22.68 39.92 0.16 / 6.39
(o) Fine-tune MoCo 14.49 27.59 0.10 4.96 8.91 26.86 0.16 / 5.73
(p) Standard Training MoCo 26.63 45.02 9.63 20.54 21.12 35.60 11.29
(q) NCM MoCo 19.24 31.12 14.40 21.95 18.99 22.90 0.15
(r) Exemplar Tuning (Ours) MoCo 31.50 46.21 12.90 21.10 24.36 39.61 0.16 / 5.73

5. Experiments and Analysis
We evaluate representative methods from few-shot, con-

tinual, self-supervised learning, and out-of-distribution de-
tection in the proposed FLUID framework. We present a
broad set of practical observations and discuss novel find-
ings that validate the need for FLUID and suggest future
research directions. Table 3 displays a comprehensive set of
metrics for the set of methods (outlined in Sec 4). Through-
out this section, we will refer to rows of the table for specific
analysis.

Few-shot Analysis We evaluate Prototypical Networks
(PTN), Model Agnostic Meta-Learning (MAML), Weight
Imprinting, and Meta-Baseline and compare to the baselines
of Nearest Class Mean (NCM), fine-tuning, and standard
training. We choose to evaluate each method for the follow-
ing reasons:
• Prototypical Networks is a prominent metric learning

method that is the basis for many other few-shot methods.
Additionally PTN differs from NCM only in the use of
meta-training so we can isolate the effect of meta-training.

• MAML is a canonical optimization-based meta-learning
approach which many other methods extend from.

• Meta-Baseline is similar to NCM except that additional
meta-training is performed after standard batch training.
It is a simple method that is competitive with state of the

art in few-shot learning.
• Weight Imprinting is a simple combination of NCM and

fine-tuning and does not use meta-training. This makes
for a natural comparison to both NCM and fine-tuning
individually along with our proposed method, ET.

We find that PTN and MAML (Table 3-a,b,c and Fig-
ure 2-a) do not perform well on FLUID with over 30% lower
overall accuracy than the NCM baseline (Table 3-k). One
could argue that PTN and MAML may scale to the larger
setting by increasing model capacity. However, few-shot
works indicate that deeper and overparameterized networks
decrease performance [13, 38, 49, 51]. We verify this ob-
servation, noting that the 4-layer convnet PTN (Table 3-a)
outperforms the ResNet18 PTN in overall and novel class
accuracy.

The prevailing thought in few-shot literature has been that
smaller networks overfit less to base classes, and therefore
methods use shallow networks or develop techniques to con-
strain deeper ones. We find evidence to the contrary, that
deeper networks generalize better to novel classes with stan-
dard batch sampling (see Figure 2-b). Given that NCM and
PTN differ only in the use of meta-training, we conclude that
meta-training must be responsible for the lack of generaliza-
tion in deeper networks. This evidence is further reinforced
by the fact that meta-baseline performs worse than NCM

6

0 15000 30000 45000 60000 75000
of Samples Seen

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ol

lin
g

A
cc

ur
ac

y
ET (ours)
Fine-tune
LwF
NCM
PTN
MAML

0 15000 30000 45000 60000
of Samples Seen

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ol

lin
g

A
cc

ur
ac

y

NCM - DenseNet161
NCM - ResNet50
NCM - ResNet18

(a) (b)
Figure 2. (a) Compares the rolling accuracy of various methods over the stream of data. Exemplar Tuning performs the best at all stages
of the stream. (b) Compares the accuracy of NCM on novel classes across network architectures. Contrary to prevailing thought, we find that
deeper networks generalize better to novel few-shot classes.

with the inclusion of meta-training (Table 3-d,k). Although
meta-training has merits for smaller data sets, in its current
form it does not scale well to more data and classes.

While the few-shot benchmarks and methods have their
merits and advantages, these observations validate the need
for more general and challenging evaluations like FLUID.

Continual Learning Analysis We evaluate Learning
without Forgetting (LwF) and Elastic Weight Consolidation
(EWC). For analysis, we compare to the baselines NCM,
standard training, fine-tuning. We evaluate LwF and EWC
because they are well-known CL methods that are general
enough to be reasonably adapted to the FLUID setup. We
find that fine-tuning the classifier outperforms CL methods
in both accuracy and mean per-class accuracy in FLUID.

Note that FLUID can be considered a specific instance
of the CL formulation with the significant difference from
standard CL formulations being the inclusion of pretrain-
ing, flexible training, and not batching as discussed in 2. We
contend pretraining is a reasonable inclusion as real-world vi-
sion systems have access to large datasets such as ImageNet.
From the experiments, we find that initializing networks
with standard pretraining almost completely mitigates the
effect of catastrophic forgetting in its current formulation,
indicating we may need to rethink current evaluations.

We find that NCM and fine-tuning outperform LwF and
EWC on both pretrain and new classes which indicates that
continual learning methods are limited in situations with
large-scale pretraining. NCM uses no memory caching or
replay buffer and has frozen features while LwF and EWC
cache all stream images and freely train their features. NCM
learns new classes as well as the CL methods with no pos-
sibility of forgetting. Furthermore, fine-tuning which also
uses frozen features learned during pretraining outperforms
both methods on novel and old classes and has ∼ 4% higher
overall accuracy. This finding validates the argument that
the details of benchmarks directly impact the design and util-
ity of the methods developed for them; thus making a case
for FLUID like frameworks that unify multiple setups and

provide a more holistic evaluation. We also acknowledge
that for scenarios in which the pretraining data is radically
different from the target distribution the above conclusion
may not hold, such as for permuted MNIST.

Exemplar Tuning We find that ET (Table 3-l) has sig-
nificantly higher overall and mean-class accuracy than all
other evaluated methods and uses similar compute as fine-
tuning. Figure 2-a shows how ET quickly adapts to new
classes and continues to learn in the standard data regime
(high accuracy at the start and end of the stream). Finally,
we show that ET outperforms simple NCM + fine-tuning
(Weight Imprinting) by ∼10%, in addition to the practical
advantages outlined in section 4.

ET is a simple, general baseline that works not only
for FLUID, as evidenced through its effectiveness in stan-
dard recognition tasks on Mini-ImageNet [58] & ImageNet-
LT [36] (see Appendix M).

New Class Detection and MDT We measure AUROC
for detecting new classes throughout the sequence and
present in Figure 3-b. HG baseline + ET, OLTR, and MDT
+ ET achieve 0.84, 0.78 and 0.92 AUROC scores respec-
tively. The performance of Minimum Distance Thresholding
(MDT) indicates that standard recognition networks are well
suited for detecting out-of-distribution classes and can be
done simultaneously with classification. We compare MDT
and HG baseline with other classifiers such as NCM and
fine-tuning in Appendix K.

Representation Learning We observe unexpected be-
havior from contrastive MoCo [20] and VINCE [15] repre-
sentations in the FLUID setting . For example, when fine-
tuning the classifier of a MoCo representation we find that
accuracy is less than 1% and 4.96% on novel and pretrain
tail classes respectively (Table 3-o). In comparison the su-
pervised counterpart (Table 3-i) obtains 23.56% and 58.77%
accuracy respectively. We conjecture that this difficulty is
induced by learning with a linear classifier as NCM with
MoCo pretraining (Table 3-q) does not exhibit the same diffi-
culties as standard training and fine-tuning. Figure 3-a shows

7

0 15000 30000 45000 60000 75000
of Samples Seen

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
ol

lin
g

A
cc

ur
ac

y

Sup ST - lr = 0.01
MoCo ST - lr = 0.01
MoCo ST - lr = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

MDT + ET(Ours)
HG + ET
OLTR

2

164 8
Epochs

(a) (b) (c)

Figure 3. (a) Accuracy of standard training with MoCo & supervised pretraining. Surprisingly, MoCo accuracy falls during initial streaming
phase. (b) ROC curves for unseen class detection. MDT outperforms all OOD baselines evaluated in FLUID. (c) Standard training accuracy
curve for a range of training frequencies & epochs showing that over training can lead to lower accuracy. MACs ∝ total gradient updates.

other unexpected behavior where MoCo accuracy decreases
to almost 0% initially when standard training, then begins
improving after 10K samples. This behavior is not observed
for supervised pretraining and occurs for multiple learning
rates. We argue that this is related to learning a mixture of
pretrain and novel classes which is the primary difference
between FLUID and previous downstream tasks. The signifi-
cantly lower accuracy of MoCo representations on novel tail
classes while fine-tuning (Table 3-o) further reinforces this
hypothesis. These observations and insights are further sup-
ported by similar results obtained for representations trained
via VINCE [15], a self-supervised contrastive representation
learning method (see Appendix G). These results validate the
utility of a unified evaluation such as FLUID which assess
the capabilities of methods along more dimensions.

Update Strategies We briefly investigate trade-offs be-
tween compute cost and accuracy of simple update strategies.
The challenge of learning adaptive update strategies is an
unexplored problem posed by FLUID left to future work.

We evaluate the accuracy and total compute cost of com-
binations of varying update frequencies and number of train-
ing epochs per update (Figure 3-c & 6). We conduct our
experiments for fine-tuning (Figure 6 in Appendix N) and
for standard training (Figure 3-c) on ResNet18 model with
supervised pretraining.

We observe that training for too many total epochs (train-
ing frequency × epochs) with standard training (Figure 3-c)
unexpectedly decreases overall accuracy, though fine-tuning
asymptotically improves (Figure 6 in Appendix N). We
hypothesize that the optimal amount of training balances
the features learnt from ImageNet-1K with those from the
smaller, imbalanced streaming data. This aligns with our
continual learning experiments that indicate large-scale pre-
trained features trained on more data outperform specialized
features. These initial experiments are intended to illustrate
the new problems that FLUID presents for future research.
The results indicate that there is significant room for im-
provement in both efficiency and accuracy with new strate-

gies for training networks under streaming conditions which
we leave for future work.

6. Limitations and Future Work
Throughout this paper, we studied various methods and

settings in the context of supervised image classification,
a highly explored problem in ML. While we do not make
design decisions specific to image classification, incorpo-
rating other mainstream tasks into FLUID is an immediate
next step. Also while the FLUID framework is agnostic to
any particular data set, our experiments and conclusions are
anchored in the ImageNet domain. Across the experiments
in this paper, we impose some assumptions about the learn-
ing conditions, albeit only a few, on FLUID. For example,
we currently assume that FLUID has access to labels as the
data streams in. One exciting future direction is to add the
semi- and un-supervised aspects to FLUID. Relaxing these
remaining assumptions to bring FLUID even closer to real
world settings is an interesting direction for future work.

7. Conclusions
We introduce FLUID, a unified evaluation framework de-

signed to facilitate research towards more general methods
capable of handling the challenges of learning in practical
settings. FLUID enables comparison and integration of so-
lutions across few-shot, transfer, continual representation
learning, & out-of-distribution detection while introducing
new research challenges like how and when to update model
parameters based on incoming data. Through our experi-
ments with FLUID on a wide-range of methods we show
the limitations and merits of existing solutions. For exam-
ple, canonical few-shot methods do not scale well to more
classes/examples and continual learning techniques reduce
accuracy with large-scale pretraining. As a starting point
for developing general methods on FLUID, we present two
simple baselines, Exemplar Tuning & Minimum Distance
Thresholding, which outperform all other evaluated methods.

8

Acknowledgements

This work is in part supported by NSF IIS 1652052, IIS
17303166, DARPA N66001-19-2-4031, 67102239 and gifts
from Allen Institute for Artificial Intelligence. We thank
Jae Sung Park and Mitchell Wortsman for insightful discus-
sions and Daniel Gordon for the pretrained MoCo weights.

References
[1] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuyte-

laars. Task-free continual learning. Proceedings of
the IEEE conference on computer vision and pattern
recognition, 2019. 2

[2] Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuyte-
laars. Selfless sequential learning. arXiv preprint
arXiv:1806.05421, 2018. 2

[3] Abhijit Bendale and Terrance Boult. Towards open
world recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 1893–1902, 2015. 4

[4] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bern-
hard Pfahringer. Moa: Massive online analysis. Journal
of Machine Learning Research, 11:1601–1604, 2010.
3

[5] Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 535–541,
2006. 5

[6] Wei-Lun Chao, Soravit Changpinyo, Boqing Gong, and
Fei Sha. An empirical study and analysis of generalized
zero-shot learning for object recognition in the wild. In
European conference on computer vision, pages 52–68.
Springer, 2016. 3

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. arXiv preprint
arXiv:2002.05709, 2020. 4

[8] Yinbo Chen, Xiaolong Wang, Zhuang Liu, Huijuan Xu,
and Trevor Darrell. A new meta-baseline for few-shot
learning. arXiv preprint arXiv:2003.04390, 2020. 5

[9] Jaeik Cho, Taeshik Shon, Ken Choi, and Jongsub Moon.
Dynamic learning model update of hybrid-classifiers
for intrusion detection. The Journal of Supercomputing,
64(2):522–526, 2013. 3

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009. 4, 12

[11] Vincent Dumoulin, Neil Houlsby, Utku Evci, Xiao-
hua Zhai, Ross Goroshin, Sylvain Gelly, and Hugo
Larochelle. Comparing transfer and meta learning

approaches on a unified few-shot classification bench-
mark. arXiv preprint arXiv:2104.02638, 2021. 3

[12] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel
Castro, and Erich Elsen. Rigging the lottery: Making
all tickets winners. In Proceedings of the International
Conference on Machine Learning, 2020. 3

[13] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
pages 1126–1135. JMLR. org, 2017. 5, 6

[14] Heitor Murilo Gomes, Jesse Read, Albert Bifet,
Jean Paul Barddal, and João Gama. Machine learn-
ing for streaming data: state of the art, challenges, and
opportunities. ACM SIGKDD Explorations Newsletter,
2019. 3

[15] Daniel Gordon, Kiana Ehsani, Dieter Fox, and Ali
Farhadi. Watching the world go by: Representa-
tion learning from unlabeled videos. arXiv preprint
arXiv:2003.07990, 2020. 4, 7, 8, 13, 14, 15

[16] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A
dataset for large vocabulary instance segmentation. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 5356–5364, 2019.
4

[17] Bharath Hariharan and Ross Girshick. Low-shot visual
recognition by shrinking and hallucinating features. In
Proceedings of the IEEE International Conference on
Computer Vision, pages 3018–3027, 2017. 3

[18] James Harrison, Apoorva Sharma, Chelsea Finn, and
Marco Pavone. Continuous meta-learning without
tasks. Advances in neural information processing sys-
tems, 2019. 2

[19] Jiangpeng He, Runyu Mao, Zeman Shao, and Fengqing
Zhu. Incremental learning in online scenario. arXiv
preprint arXiv:2003.13191, 2020. 2

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie,
and Ross Girshick. Momentum contrast for unsuper-
vised visual representation learning. arXiv preprint
arXiv:1911.05722, 2019. 4, 6, 7, 13, 14

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.
4

[22] Dan Hendrycks and Kevin Gimpel. A baseline for de-
tecting misclassified and out-of-distribution examples
in neural networks. arXiv preprint arXiv:1610.02136,
2016. 4, 5

[23] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017. 3

9

[24] Longlong Jing and Yingli Tian. Self-supervised visual
feature learning with deep neural networks: A survey.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020. 4

[25] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the na-
tional academy of sciences, 2017. 2, 5, 13

[26] Shu Kong and Deva Ramanan. Opengan: Open-set
recognition via open data generation. In Proceedings
of the IEEE International Conference on Computer
Vision, 2021. 4

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. Citeseer,
2009. 4

[28] Aditya Kusupati, Vivek Ramanujan, Raghav Somani,
Mitchell Wortsman, Prateek Jain, Sham Kakade, and
Ali Farhadi. Soft threshold weight reparameterization
for learnable sparsity. In Proceedings of the Interna-
tional Conference on Machine Learning, 2020. 3

[29] Aditya Kusupati, Matthew Wallingford, Vivek Ra-
manujan, Raghav Somani, Jae Sung Park, Krishna Pil-
lutla, Prateek Jain, Sham Kakade, and Ali Farhadi. Llc:
Accurate, multi-purpose learnt low-dimensional binary
codes. In Advances in neural information processing
systems, 2021. 3

[30] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and
Joshua Tenenbaum. One shot learning of simple visual
concepts. In Proceedings of the annual meeting of the
cognitive science society, volume 33, 2011. 4

[31] Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998. 4

[32] Kimin Lee. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In
Advances in neural information processing systems
workshop. 4, 5

[33] Zhizhong Li and Derek Hoiem. Learning without for-
getting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947, 2017. 2, 5,
13

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects
in context. In European conference on computer vision,
pages 740–755. Springer, 2014. 3

[35] Zhiqiu Lin, Deva Ramanan, and Aayush Bansal.
Streaming self-training via domain-agnostic unlabeled
images. arXiv preprint arXiv:2104.03309, 2021. 3

[36] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun
Wang, Boqing Gong, and Stella X Yu. Large-scale
long-tailed recognition in an open world. In Proceed-
ings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2537–2546, 2019. 4, 5, 7,
13, 14

[37] Marc Masana, Idoia Ruiz, Joan Serrat, Joost van de
Weijer, and Antonio M Lopez. Metric learning for
novelty and anomaly detection. In Proceedings of the
British Machine Vision Conference, 2018. 4, 5

[38] Boris Oreshkin, Pau Rodríguez López, and Alexandre
Lacoste. Tadam: Task dependent adaptive metric for
improved few-shot learning. In Advances in Neural
Information Processing Systems, pages 721–731, 2018.
3, 5, 6

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Infor-
mation Processing Systems, pages 8024–8035, 2019.
13

[40] Ameya Prabhu, Philip H.S. Torr, and Puneet K. Doka-
nia. Gdumb: A simple approach that questions our
progress in continual learning. In Proceedings of the
European Conference on Computer Vision, 2020. 3

[41] Senthil Purushwalkam and Abhinav Gupta. Demys-
tifying contrastive self-supervised learning: Invari-
ances, augmentations and dataset biases. arXiv preprint
arXiv:2007.13916, 2020. 4

[42] Hang Qi, Matthew Brown, and David G Lowe. Low-
shot learning with imprinted weights. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 5822–5830, 2018. 5, 14

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. arXiv preprint arXiv:2103.00020,
2021. 4

[44] Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks. In
European conference on computer vision, pages 525–
542. Springer, 2016. 3

[45] Sachin Ravi and Hugo Larochelle. Optimization as a
model for few-shot learning. International Conference
on Learning Representations, 2017. 3

[46] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H Lampert. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer Vi-
sion and Pattern Recognition, pages 2001–2010, 2017.
2

[47] Matthew Riemer, Ignacio Cases, Robert Ajemian,
Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing
transfer and minimizing inference. Proceedings of

10

the IEEE conference on computer vision and pattern
recognition, 2019. 2

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Im-
agenet large scale visual recognition challenge. Inter-
national journal of computer vision, 115(3):211–252,
2015. 3, 4, 12

[49] Jake Snell, Kevin Swersky, and Richard Zemel. Pro-
totypical networks for few-shot learning. In Advances
in neural information processing systems, pages 4077–
4087, 2017. 5, 6, 14, 16

[50] Jerzy Stefanowski and Dariusz Brzezinski. Stream
classification., 2017. 3

[51] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt
Schiele. Meta-transfer learning for few-shot learning.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 403–412, 2019.
3, 5, 6

[52] Yu Sun, Xiaolong Wang, Liu Zhuang, John Miller,
Moritz Hardt, and Alexei A. Efros. Test-time training
with self-supervision for generalization under distribu-
tion shifts. In ICML, 2020. 2

[53] Sebastian Thrun. Is learning the n-th thing any easier
than learning the first? Advances in neural information
processing systems, 1996. 2

[54] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B
Tenenbaum, and Phillip Isola. Rethinking few-shot
image classification: a good embedding is all you need?
arXiv preprint arXiv:2003.11539, 2020. 5

[55] Michael Tschannen, Olivier Bachem, and Mario Lucic.
Recent advances in autoencoder-based representation
learning. arXiv preprint arXiv:1812.05069, 2018. 4

[56] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin
Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro
Perona, and Serge Belongie. The inaturalist species
classification and detection dataset. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 8769–8778, 2018. 4

[57] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zis-
serman. Open-set recognition: A good closed-set clas-
sifier is all you need. arXiv preprint arXiv:2110.06207,
2021. 4

[58] Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Daan Wierstra, et al. Matching networks for one shot
learning. In Advances in neural information processing
systems, pages 3630–3638, 2016. 4, 7, 14

[59] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and
Laurens van der Maaten. Simpleshot: Revisiting
nearest-neighbor classification for few-shot learning.
arXiv preprint arXiv:1911.04623, 2019. 5

[60] Kapil K Wankhade, Snehlata S Dongre, and Kalpana C
Jondhale. Data stream classification: a review. 3

[61] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensem-

ble: an alternative approach to efficient ensemble and
lifelong learning. In International Conference on
Learning Representations, 2020. 4

[62] Davis Wertheimer and Bharath Hariharan. Few-shot
learning with localization in realistic settings. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6558–6567, 2019. 4

[63] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu,
Aniruddha Kembhavi, Mohammad Rastegari, Jason
Yosinski, and Ali Farhadi. Supermasks in superposition.
In Advances in Neural Information Processing Systems,
2020. 2

11

A. FLUID Procedure
Algorithm 1 describes the high level implementation di-

rectives of FLUID framework.

Algorithm 1 FLUID Procedure
Input: Task T
Input: ML sys.: (pretrained) model f , update strategy S
Output: Evaluations: E, Operation Counter: C

1: function FLUID(T , (f ,S))
2: Evaluations E = []
3: Datapoints D = []
4: Operation Counter C = 0.

5: while streaming do
6: Sample {x, y} from T
7: prediction p = f(x) (A operations)
8: Flag n indicates if y is a new unseen class
9: E.insert({y, p, n})

10: D.insert({x, y})
11: Update f using S with D (B operations)
12: C += A+B
13: end while

14: return E,C
15: end function

B. Dataset Information
The five sequences we pair with FLUID are constructed

from ImageNet-22K [10]. Two sequences (1-2) are for vali-
dation, and three (3-5) are for testing. Each sequence con-
tains 1,000 classes; 250 of which are in ImageNet-1K [48]
(pretrain classes) and 750 of which are only in ImageNet-
22K (novel classes). For the test sequences, we randomly
select the classes without replacement to ensure that the
sequences do not overlap. The validation sequences share
pretrain classes because there are not enough pretrain classes
(1000) to partition among five sequences. We randomly dis-
tribute the number of images per class according to Zipf’s
law with s = 1 (Figure 4). For classes without enough im-
ages, we fit the Zipfian distribution as closely as possible
which causes a slight variation in sequence statistics seen in
Table 4.

Table 4. Statistics for the sequences of images used in FLUID.
Sequences 1-2 are for validation and Sequence 3-5 are for testing.
The images from ImageNet-22k are approximately fit to a Zipfian
distribution with 250 classes overlapping with ImageNet-1k and
750 new classes.

Sequence # Number of Images Min # of Class Images Max # of Class Images

1 89030 1 961
2 87549 21 961
3 90133 14 961
4 86988 6 892
5 89921 10 961

Figure 4. The distribution of samples over the classes for Sequences
1 - 5. Classes with less than 50 samples are considered in the tail
and samples with greater than or equal to 50 samples are considered
in the head for the purpose of reporting.

C. Dataset License
ImageNet does not explicitly provide a license.

D. More Method Details
Nearest Class Mean Each class mean, mi, is the av-

erage feature embedding of all examples in class i: mi =∑
x∈Ci fφ(x); where Ci is the set of examples belong to

class i and fφ is the deep feature embedding of x. Class
probabilities are the softmax of negative distances between
x and class means:

P (y = i|x) = e−d(mi,fφ(x))∑
i′ e
−d(mi′ ,fφ(x))

(2)

MAML The gradient update for MAML is: θ ← θ −
β ·∇θ

∑
Ti∼p(T) LTi

(
fθ′i
)

where θ′i are the parameters after
making a gradient update given by: θ′i ← θ−α ·∇θLTi (fθ).

OLTR The network consist of two parts 1) A feature
extractor consist of a ResNet backbone followed by a modu-
lated attention and 2) A classifier and memory bank that are
used to classify the output of the feature extractor. Training
is done in 2 stages; In the first stage the feature extractor is
trained. In the second stage the feature extractor and clas-
sifier are fine-tuned while samples are accumulated in the
memory bank.

Weight Imprinting Weight Imprinting initializes the
weights of the cosine classification layer, then performs fine-
tuning using all of the data with a learnable temperature to
scale the logits. Weight Imprinting can be thought of as
NCM with cosine similarity as the metric for determining
the closest neighbor, then performing fine-tuning. To use
Weight Imprinting in a sequential setting, rather than a few-
shot setting, we must decide when to begin fine-tuning. In

12

the original formulation, fine-tuning was performed after the
centroids were calculated using the entire data set, but in the
sequential setting we do not have access to the entire data
set until streaming ends. Therefore we choose to begin fine-
tuning when the accuracy of fine-tuning exceeds NCM on
validation data. In a real-world scenario it would be difficult
to obtain such information, but we employ such a strategy
to provide an upper-bound for the performance of Weight
Imprinting in the sequential setting.

E. Implementation Details
In this section, we discuss how methods are adapted with

respect to FLUID. Some methods are intuitively applied with
little modification, and some require interpretation for how
they should be adapted.

Offline Training For all experiments (Table 3) that re-
quire offline training (fine-tuning, Weight Imprinting, stan-
dard training, ET and LwF), except OLTR, we train each
model for 4 epochs every 5,000 samples observed. An epoch
includes training over all previously seen data in the se-
quence. Experiments in Figure 6 show that training for 4
epochs every 5,000 samples balanced sufficient accuracy
and reasonable computational cost. Fine-tuning experiments
use a learning rate of 0.1 and standard training uses 0.01 for
supervised pretraining. For MoCo pretraining fine-tuning
uses a learning rate of 30 and standard training uses 0.01. All
the experiments use the SGD+Momentum optimizer with a
0.9 momentum.

Instance-Based Updates All instance-based methods
(NCM, ET, Weight Imprinting, Prototypical Networks) are
updated after every sample as it takes no additional compute
compared to batch updates.

Meta-Training For few-shot methods that leverage meta-
training for pretraining, we used 5-shot 30-way except for
MAML which we meta-trained with 5-shot 5-way due to
computational costs. We choose to use 30-way as the com-
putational graph is limited in the number of instances that it
can store in memory and backpropagate to. We meta-train
for 100 epochs with a learning rate of 0.01 and reduce it by
0.5 every 40 epochs.

Exemplar Tuning We initialize the residual vectors
as zero. ET is trained according to the specifications of
instance-based updates and offline training simultaneously.

Weight Imprinting For Weight Imprinting, we transi-
tion from NCM to fine-tuning after 10,000 samples as we
observed that the accuracy of NCM saturated at this point in
the validation sequence. We use a learning rate of 0.1 while
fine-tuning.

Learning Without Forgetting We adapt Learning With-
out Forgetting to the FLUID task by freezing a copy of the
model after pretraining which is used for knowledge distilla-
tion. Not all pretraining classes are seen during streaming so
only softmax probabilities for classes seen during the stream

are used in the cross-entropy between the soft labels and
predictions. We use a temperature of 2 to smooth the proba-
bilities in accordance with [33]. Training is done according
to the specifications given in the offline training portion of
this section.

Elastic Weight Consolidation We adapt Elastic Weight
Consolidation [25] to the FLUID task by freezing a copy
of the model after pretraining as the optimla model of the
pretrain task. We then use the validation set of ImageNet-1K
corresponding to the 250 classes being used for the computa-
tion of Fisher information per-parameter. For every training
step in FLUID, a penalty is added based on the distance
moved by the parameters from the base model weighted by
the Fisher information. The Fisher information is calculated
at the start of every flexible train step to mitigate catastrophic
forgetting. Training is done according to the specifications
given in the offline training portion of this section. Depend-
ing on how frequently the Fisher information is computed,
the compute associated increases over the standard training
costs.

OLTR For OLTR [36], we update the memory and train
the model for 4 epochs every 200 samples for the first 10,000
samples, then train 4 epochs every 5,000 samples with a 0.1
learning rate for classifier parameters and 0.01 for feature
extraction parameters which is in accordance with the speci-
fications of the original work.

Pretraining We use the PyTorch [39] ResNet18 and
ResNet50 models pretrained on supervised ImageNet-1K.
We use the models from Gordon et al. [15] for the MoCo [20]
self-supervised ImageNet-1K pretrained models. MoCo-
ResNet18 and MoCo-ResNet50 get top-1 validation accu-
racy of 44.7% and 65.2% respectively and were trained for
200 epochs. For fine-tuning and ET with MoCo, we report
the results with a learning rate of 30 which is suggested by
the original work when learning on frozen features. All other
learning rates with MoCo are the same as with supervised.

F. Training Depth for Fine Tuning

We explored how training depth affects the accuracy of a
model on new, old, common, and rare classes. For this set
of experiments, we vary the number of trained layers when
fine-tuning for 4 epochs every 5,000 samples on ResNet18
with a learning rate of 0.01 on Sequence 2 (validation). The
results are reported in Table 5. We found that training more
layers leads to greater accuracy on new classes and lower
accuracy on pretrain classes. However, we observed that
the number of fine-tuning layers did not significantly affect
overall accuracy so for our results on the test sequences (3-5)
we only report fine-tuning of one layer (Table 3).

13

Table 5. The results for fine-tuning various numbers of layers with
a learning rate of .01 on Sequence 2. Training more layers generally
results in higher accuracy on novel classes, but lower accuracy on
pretrain classes. The trade-off between novel and pretrain accuracy
balances out so the overall accuracy is largely unaffected by the
depth of training.

of
Layers

Novel-
Head (>50)

Pretrain-
Head (>50)

Novel-
Tail (<50)

Pretrain-
Tail (<50)

Mean
Per-Class Overall

1 41.32 80.96 17.13 66.52 39.19 56.87
2 41.55 80.79 17.40 67.03 39.43 56.79
3 45.82 78.59 19.08 59.52 40.73 57.23
4 46.96 75.44 19.87 53.97 40.39 57.04
5 46.76 75.72 19.97 54.04 40.41 57.04

G. Results for VINCE ResNet18 backbone on
Sequence 5

We report all performance metrics for sequence 5 in
Table 6 for ResNet18 backbone trained via VINCE [15].
VINCE is a self-supervised representation learning method
that focuses on leveraging video as a natural form of augmen-
tation for contrastive learning. These results corroborate the
findings of Table 3 which uses ResNet18 backbone trained
via MoCo [20] further solidifying the insights drawn on
self-supervised representation learning methods.

H. Results for ResNet50 backbone on Se-
quence 5

We report all performance metrics for sequence 5 in Ta-
ble 7 for ResNet50 backbone. These results corroborate the
findings of Table 3 which uses ResNet18 backbone.

I. Results For Other Sequences
We report the mean and standard deviation for all perfor-

mance metrics across test sequences 3-5 in Table 8. Note
that the standard deviation is relatively low so the methods
are consistent across the randomized sequences.

J. Prototypical Network Experiments
We benchmarked our implementation of Prototypical Net-

works on few-shot baselines to verify that it is correct. We
ran experiments for training on both MiniImageNet [58]
and regular ImageNet-1k and tested our implementation on
the MiniImageNet test set and FLUID (Sequence 2). We
found comparable results to those reported by the original
Prototypical Networks paper [49] (Table 9).

K. Out-of-Distribution Ablation
In this section we report AUROC and F1 for MDT and

softmax for all baselines. In section 5 we only included
OLTR, MDT with Exemplar Tuning, and ET with maxi-
mum softmax (Hendrycks Baseline). Additionally, we vi-

sualize the accuracy curves for in-distribution and out-of-
distribution samples as the rejection threshold vary (Fig-
ure 5). All the OOD experiments presented in Figure 5
and Table 10 were run using ResNet18. Minimum Distance
Thresholding (MDT) threshold distances but also similar-
ity metrics can be used. MDT generally works better than
maximum softmax when applied to most methods.

The results of NCM and Exemplar Tuning using soft-
max and dot product similarity in comparison to OLTR are
shown in table 10. The F1-scores are low due to the large
imbalance between positive and negative classes. There are
750 unseen class datapoints vs ∼ 90000 negative datapoints.
Table 10 shows that cosine similarity (MDT) is better than
softmax or the OLTR model for most methods.

L. Weight Imprinting and Exemplar Tuning
Ablations

In Table 11, we ablate over various softmax temperature
initializations with Weight Imprinting. We learn the temper-
ature as described in [42], but find that initial value affects
performance. We report the best results in the main paper.
We also ablate over the similarity metrics use in ET. We find
that the dot product (linear) is the best measure of similarity
for ET.

M. Exemplar Tuning on Standard Recognition
Tasks

On Mini-ImageNet [58], for 5-shot 5-way
Exemplar Tuning with a ResNet10 backbone obtains
an accuracy 72.1% compared to 68.2% for Prototypical
Networks. Exemplar Tuning accuracy on ImageNet-LT
[36] with a ResNet18 backbone is 42.1% while a standard
linear layer gets to 41.9%.

N. Update Strategies
Figure 6 has the accuracy vs MACs trade-off for fine-

tuning across various update strategies.

14

Table 6. Results on sequence 5 with ResNet18 backbone trained using VINCE [15]

Method
Pretrain
Strategy

Novel -
Head (>50)

Pretrain -
Head (>50)

Novel -
Tail (<50)

Pretrain -
Tail (<50)

Mean
Per-Class Overall GMACs↓

(×106)

Backbone - ResNet18

(a) Fine-tune VINCE 18.00 14.61 1.89 1.56 7.25 26.27 0.16 / 5.73
(b) Standard Training VINCE 24.60 32.06 6.38 9.63 16.17 32.95 11.29
(c) NCM VINCE 15.96 22.32 12.32 16.08 15.20 18.28 0.15
(d) Exemplar Tuning VINCE 26.84 37.03 7.32 11.30 18.11 35.44 0.16 / 5.73

Table 7. Continuation of Table 3 results on sequence 5 with ResNet50 backbone.

Method
Pretrain
Strategy

Novel -
Head (>50)

Pretrain -
Head (>50)

Novel -
Tail (<50)

Pretrain -
Tail (<50)

Mean
Per-Class Overall GMACs↓

(×106)

Backbone - ResNet50

(a) Fine-tune MoCo 14.42 43.61 0.22 13.40 11.85 31.35 0.36 / 13.03
(b) Fine-tune Sup. 47.78 82.06 27.53 66.42 46.24 57.95 0.36 / 13.03
(c) Standard Training MoCo 26.82 42.12 10.50 21.08 21.32 35.44 38.36
(d) Standard Training Sup. 43.89 74.50 21.54 50.69 39.48 54.10 38.36
(e) NCM MoCo 30.58 55.01 24.10 45.37 32.75 36.14 0.35
(f) NCM Sup. 45.58 78.01 35.94 62.90 47.75 52.19 0.35
(g) LwF Sup. 21.52 49.17 5.49 38.74 20.69 30.57 38.36/76.72
(h) EWC Sup. 43.84 76.03 21.22 53.64 39.89 54.59 40.36
(i) Exemplar Tuning MoCo 28.86 54.03 7.02 20.82 21.89 40.13 0.36 / 13.03
(j) Exemplar Tuning Sup. 52.95 82.27 28.13 57.15 48.02 62.41 0.36 / 13.03

0.0 0.2 0.4 0.6 0.8 1.0
minimum cosine distance

0

.2

.4

.6

.8

1

Co
rre

ct
ly

 la
be

le
d

pe
rc

en
ta

ge

IND
OOD

(a) NCM+MDT

0 1 2 3 4 5 6
maximum similarity 1e1

0

.2

.4

.6

.8

1

IND
OOD

(b) ET + MDT

1 2 3 4
maximum similarity 1e1

0

.2

.4

.6

.8

1

IND
OOD

(c) Fine-Tune + MDT

0.0 0.2 0.4 0.6 0.8 1.0
max probability

0

.2

.4

.6

.8

1

IND
OOD

(d) OLTR

1.0 1.2 1.4 1.6 1.8 2.0 2.2
max probability 1e 3

0

.2

.4

.6

.8

1

Co
rre

ct
ly

 la
be

le
d

pe
rc

en
ta

ge

IND
OOD

(e) NCM+Softmax

0.0 0.2 0.4 0.6 0.8 1.0
max probability

0

.2

.4

.6

.8

1

IND
OOD

(f) ET + Softmax

0.0 0.2 0.4 0.6 0.8 1.0
max probability

0

.2

.4

.6

.8

1

IND
OOD

(g) Fine-Tune + Softmax

0.0 0.2 0.4 0.6 0.8 1.0
max probability

0

.2

.4

.6

.8

1

IND
OOD

(h) Full train + Softmax

Figure 5. The accuracy for the in-distribution (IND) and out-of-distribution (OOD) samples as the threshold for considering a sample
out-of-distribution varies. The horizontal axis is the threshold value, and the vertical axis is the accuracy. Intersection of the IND and OOD
curves at a higher accuracy generally indicates better out-of-distribution detection for a given method.

15

Table 8. Averaged results for all methods evaluated on Sequences 3-5. See Table 3 for the computational cost (GMACs) for each method and
more information about each column.

Method Pretrain
Novel -

Head (>50)
Pretrain -

Head (>50)
Novel -

Tail (<50)
Pretrain -
Tail (>50)

Mean
Per-Class Overall

Backbone - Conv-4

Prototype Networks Meta 5.02±0.05 9.71±0.11 0.64±0.01 1.27±0.04 3.25±0.03 7.82±0.09
MAML Meta 2.93±0.01 2.02±0.02 0.15±0.01 0.1±0.01 1.11±0.02 3.64±0.06

Backbone - ResNet18

Prototype Networks Meta 8.72±0.09 16.84±0.14 7.06±0.03 12.98±0.04 9.46±0.08 11.19±0.12
Meta-Baseline Sup./Meta 41.73±0.57 66.54±2.37 27.54±1.13 53.69±0.97 39.32±0.71 47.74±0.63
Fine-tune Moco 5.31±0.24 45.95±1.27 0.03±0 26.23±0.88 10.64±0.23 18.52±0.98
Fine-tune Sup. 43.2±0.65 74.55±2.53 22.79±1.21 59.63±1.02 40.9±0.73 53.06±0.65
Standard Training Moco 26.9±0.27 42.39±3.04 9.1±0.74 21.11±0.51 20.76±0.32 34.85±0.75
Standard Training Sup. 38.82±0.49 65.88±2.32 16.15±0.83 44.3±0.91 33.63±0.38 48.81±0.57
NCM Moco 19.31±0.06 30.02±1.69 14.21±0.46 22.06±0.52 18.86±0.13 22.14±1.24
NCM Sup. 41.68±0.65 70.05±2.29 31.24±0.86 57.23±0.97 42.87±0.62 47.89±0.76
OLTR MoCo 41.47±0.03 31.48±0.01 17.48±0.01 9.81±0.01 22.03±0 38.33±0.01
OLTR Sup. 51.19±0.37 37.02±0.51 24.14±0.14 13.77±0.24 27.6±0.28 44.46±0.44
Exemplar Tuning Moco 32.57±1.54 43.48±0.4 6.39±0.49 12.81±0.12 18.46±0.35 39.25±1.20
Exemplar Tuning Sup. 46.36±2.31 69.34±0.53 23.48±1.23 45.82±0.32 42.93±0.17 57.56±0.56

Backbone - ResNet50

Fine-tune Moco 45.95±0.26 5.31±0.32 26.23±0.07 0.03±1.74 10.64±0.21 18.52±1.02
Fine-tune Sup. 47.59±0.65 80.14±1.71 26.69±0.97 66.92±1.4 45.62±0.6 57.48±0.47
Standard Training Moco 43.93±0.73 71.72±3.18 20.84±0.92 51.43±0.68 38.94±0.9 53.45±1.73
Standard Training Sup. 47.59±0.45 80.14±2.59 26.69±0.79 66.92±1.91 45.62±0.47 57.48±0.56
NCM Moco 30.15±0.48 53.84±1.05 23.99±0.53 44.11±1.11 32.27±0.92 35.45±0.61
NCM Sup. 45.46±0.95 76.55±1.77 35.47±0.82 65.62±1.57 47.77±0.65 52.22±0.55
Exemplar Tuning Moco 28.46±3.04 40.42±1.33 7.57±2.15 14.36±4.14 19.54±2.63 32.07±2.37
Exemplar Tuning Sup. 49.24±1.55 75.78±1.84 26.67±2.17 55.63±2.31 44.15±1.44 62.35±1.02

Table 9. Our implementation of Prototypical Networks on MiniImageNet & FLUID. � Results from Snell et al. [49].

Method Backbone Train Set
MiniImageNet
5 Way - 5 Shot FLUID

Prototypical Networks Conv - 4 MiniImageNet 69.2 14.36
Prototypical Networks Conv - 4 ImageNet (Train) 42.7 15.98
Prototypical Networks� Conv - 4 MiniImageNet 68.2 -

Table 10. The out-of-distribution performance for each method on sequence 5. We report the AUROC and the F1 score achieved by choosing
the best possible threshold value.

Metric NCM
+Softmax

NCM
+MDT

Exemplar Tuning
+Softmax

Exemplar Tuning
+MDT

Standard Training
+Softmax

Standard Training
+MDT

Fine-Tune
+Softmax

Fine-Tune
+MDT OLTR

AUROC 0.07 0.85 0.84 0.92 0.59 0.53 0.68 0.72 0.78
F1 0.01 0.20 0.10 0.20 0.03 0.02 0.06 0.10 0.27

16

Table 11. Comparison of Weight Imprinting and Exemplar Tuning with different classifiers and initial temperatures.
Exemplar Tuning with a linear layer performs significantly better than all other variants.

Method Pretrain Backbone
Novel -

Head (>50)
Pretrain -

Head (>50)
Novel -

Tail (<50)
Pretrain -
Tail (>50)

Mean
Per-Class Overall

Weight Imprinting (s = 1) Sup R18 36.58 63.39 9.32 21.80 26.85 46.35
Weight Imprinting (s = 2) Sup R18 36.58 63.39 9.32 21.80 26.85 46.35
Weight Imprinting (s = 4) Sup R18 40.32 67.46 15.35 34.18 32.69 48.51
Weight Imprinting (s = 8) Sup R18 31.18 32.66 34.77 28.94 32.56 46.67

Exemplar Tuning (Cosine) Sup R18 33.90 18.22 4.84 1.88 11.72 31.81
Exemplar Tuning (Euclidean) Sup R18 43.40 66.32 21.66 42.06 37.19 51.62
Exemplar Tuning (Linear) Sup R18 48.85 75.70 23.93 45.73 43.61 58.16

2

16

4

8
Epochs

Figure 6. The plot compares the accuracy and MACs for various update strategies when fine-tuning.

17

